【題目】如圖,邊長為2的正方形ABCD,點(diǎn)P從點(diǎn)A出發(fā)以每秒1個單位長度的速度沿ADC的路徑向點(diǎn)C運(yùn)動,同時點(diǎn)Q從點(diǎn)B出發(fā)以每秒2個單位長度的速度沿BCDA的路徑向點(diǎn)A運(yùn)動,當(dāng)Q到達(dá)終點(diǎn)時,P停止移動,設(shè)△PQC的面積為S,運(yùn)動時間為t秒,則能大致反映St的函數(shù)關(guān)系的圖象是( 。

A.B.

C.D.

【答案】A

【解析】

分點(diǎn)QBC、CD、DA邊上,結(jié)合圖形,分別求出相應(yīng)的函數(shù)解析式,即可進(jìn)行判斷.

解:當(dāng)0≤t≤1時,如圖1,S×2×22t)=22t,∴該段圖象是一次函數(shù),且St的增大而減小,

當(dāng)1t≤2時,如圖2,S2t)(2t2)=﹣t2+4t4,∴該段圖象是二次函數(shù),且開口向下,

當(dāng)2t≤3,如圖3,St2)(2t4)=(t22,∴該段圖象是二次函數(shù),且開口向上.

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個四位數(shù),記千位數(shù)字與個位數(shù)字之和為,十位數(shù)字與百位數(shù)字之和為,如果,那么稱這個四位數(shù)為對稱數(shù)

最小的對稱數(shù) ;四位數(shù)之和為最大的對稱數(shù),則的值為

一個四位的對稱數(shù),它的百位數(shù)字是千位數(shù)字倍,個位數(shù)字與十位數(shù)字之和為,且千位數(shù)字使得不等式組恰有個整數(shù)解,求出所有滿足條件的對稱數(shù)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC在坐標(biāo)平面內(nèi),三個頂點(diǎn)的坐標(biāo)分別為A0,4),B2,2),C4,6)(正方形網(wǎng)格中,每個小正方形的邊長為1

1)畫出△ABC向下平移5個單位得到的△A1B1C1,并寫出點(diǎn)B1的坐標(biāo);

2)以點(diǎn)O為位似中心,在第三象限畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為12,直接寫出點(diǎn)C2的坐標(biāo)和△A2B2C2的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB3,AD5,點(diǎn)EDC上,將矩形ABCD沿AE折疊,點(diǎn)D恰好落在BC邊上的點(diǎn)F處,求cosEFC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于平面直角坐標(biāo)系xOy中的點(diǎn)PC,給出如下定義:連接PCC于點(diǎn)N,若點(diǎn)P關(guān)于點(diǎn)N的對稱點(diǎn)QC的內(nèi)部,則稱點(diǎn)PC的外稱點(diǎn).

1)當(dāng)O的半徑為1時,

在點(diǎn)D(﹣1,﹣1),E2,0),F0,4)中,O的外稱點(diǎn)是   ;

若點(diǎn)Mm,n)為O的外稱點(diǎn),且線段MOO于點(diǎn)G,求m的取值范圍;

2)直線y=﹣x+b過點(diǎn)A1,1),與x軸交于點(diǎn)BT的圓心為Tt,0),半徑為1.若線段AB上的所有點(diǎn)都是T的外稱點(diǎn),請直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)D在⊙O的直徑AB的延長線上,CD切⊙O于點(diǎn)C,AECD于點(diǎn)E

(1)求證:AC平分∠DAE;

(2)若AB=6,BD=2,求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,∠A的平分線交BCDEAB上一點(diǎn),DE=DC,以D為圓心,以DB的長為半徑畫圓.

求證:(1AC⊙D的切線;(2AB+EB=AC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:二元一次不等式是指含有兩個未知數(shù)(即二元),并且未知數(shù)的次數(shù)是1次(即一次)的不等式;滿足二元一次不等式(組)的xy的取值構(gòu)成有序數(shù)對(x,y),所有這樣的有序數(shù)對(x,y)構(gòu)成的集合稱為二元一次不等式(組)的解集.如:x+y3是二元一次不等式,(1,4)是該不等式的解.有序?qū)崝?shù)對可以看成直角坐標(biāo)平面內(nèi)點(diǎn)的坐標(biāo).于是二元一次不等式(組)的解集就可以看成直角坐標(biāo)系內(nèi)的點(diǎn)構(gòu)成的集合.

1)已知A1),B 1,﹣1),C 2,﹣1),D(﹣1,﹣1)四個點(diǎn),請?jiān)谥苯亲鴺?biāo)系中標(biāo)出這四個點(diǎn),這四個點(diǎn)中是xy2≤0的解的點(diǎn)是   

2)設(shè)的解集在坐標(biāo)系內(nèi)所對應(yīng)的點(diǎn)形成的圖形為G

①求G的面積;

Px,y)為G內(nèi)(含邊界)的一點(diǎn),求3x+2y的取值范圍;

3)設(shè)的解集圍成的圖形為M,直接寫出拋物線yx2+2mx+3m2m1與圖形M有交點(diǎn)時m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,,以點(diǎn)為圓心、為半徑作圓,設(shè)點(diǎn)為⊙上一點(diǎn),線段繞著點(diǎn)順時針旋轉(zhuǎn),得到線段,連接、

1)在圖中,補(bǔ)全圖形,并證明 .

2)連接,若與⊙相切,則的度數(shù)為 . 

3)連接,則的最小值為 的最大值為 .

查看答案和解析>>

同步練習(xí)冊答案