已知平面內(nèi)三角形ABC和三角形DEF關(guān)于點O成中心對稱,請找出點O,并補全兩個三角形.
分析:連接AD,作AD的垂直平分線,根據(jù)中心對稱的性質(zhì)可知,垂足即為對稱中心,然后連接CO并延長至F,使OF=CO,連接EO至B,使OB=EO,再連接AB、BC、DE、EF即可.
解答:解:如圖所示.
點評:本題考查了利用旋轉(zhuǎn)變換作圖,中心對稱的性質(zhì),根據(jù)“中心對稱圖形上每一對對稱點所連成的線段都被對稱中心平分”找出對稱中心是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知平面直角坐標(biāo)系內(nèi),一次函數(shù)y=kx+2的圖象與x軸相交于點A(-2
3
,0)
,與y軸相交于點B.
(1)求一次函數(shù)的解析式,并在直角坐標(biāo)系中畫出它的圖象;
(2)若以原點O為圓心的⊙O與直線AB相切于點C,求⊙O的半徑和點C的坐標(biāo);
(3)在x軸上是否存在點P,使△PAB為等腰三角形?若存在,請寫出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•沈陽)已知等邊三角形ABC的高為4,在這個三角形所在的平面內(nèi)有一點P,若點P到AB的距離是1,點P到AC的距離是2,則點P到BC的最小距離和最大距離分別是
1,7
1,7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

等腰直角三角形AOB中腰OA=OB=6,將它放在一個平面直角坐標(biāo)系內(nèi),如圖所示,已知點P是AB邊上一動點,點Q是OA邊上的定點,OQ=4.設(shè)點P的坐標(biāo)是(x,y),△OPQ的面積為S.
(1)求y與x的函數(shù)關(guān)系式;
(2)求S與x的函數(shù)關(guān)系式,并求出當(dāng)S=10時,點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009-2010學(xué)年北京市清華附中九年級(上)統(tǒng)練數(shù)學(xué)試卷(4)(解析版) 題型:解答題

已知平面直角坐標(biāo)系內(nèi),一次函數(shù)y=kx+2的圖象與x軸相交于點,與y軸相交于點B.
(1)求一次函數(shù)的解析式,并在直角坐標(biāo)系中畫出它的圖象;
(2)若以原點O為圓心的⊙O與直線AB相切于點C,求⊙O的半徑和點C的坐標(biāo);
(3)在x軸上是否存在點P,使△PAB為等腰三角形?若存在,請寫出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(遼寧沈陽卷)數(shù)學(xué)(解析版) 題型:填空題

已知等邊三角形ABC的高為4,在這個三角形所在的平面內(nèi)有一點P,若點P到AB的距離是1,點P到AC的距離是2,則點P到BC的最小距離和最大距離分別是    

 

查看答案和解析>>

同步練習(xí)冊答案