【題目】聯(lián)想與探索:
如圖1,將線(xiàn)段A1A2本向右平移1個(gè)單位長(zhǎng)度至B1B2,得到封閉圖形A1A2B2B1(即陰影部分),在圖2中,將折線(xiàn)A1A2A3向右平移1個(gè)單位長(zhǎng)度至B1B2B3,得到封閉圖形A1A2A3B3B2B1(即陰影部分).
(1)在圖3中,請(qǐng)你類(lèi)似地畫(huà)一條有兩個(gè)折點(diǎn)的折線(xiàn),同樣向右平移1個(gè)單位長(zhǎng)度,從而得到一個(gè)封閉圖形,并用陰影表示;
(2)請(qǐng)你分別寫(xiě)出上述三個(gè)圖形中除去陰影部分后剩余部分的面積(設(shè)長(zhǎng)方形水平方向長(zhǎng)均為a,豎直方向長(zhǎng)均為b) :S1= ,S2= ,S3= ;
(3)如圖4,在一塊長(zhǎng)方形草地上,有一條彎曲的小路(小路任何地方的水平寬度都是2個(gè)單位長(zhǎng)度,長(zhǎng)方形水平方向長(zhǎng)為a,豎直方向長(zhǎng)為b),則空白部分表示的草地面積是多少?
(4)如圖5,若在(3)中的草地上又有一條橫向的曲小路(小路任何地方的寬度都是1個(gè)單位長(zhǎng)度),則空白部分表示的草地面積是多少?
【答案】 (1)見(jiàn)解析;(2)a(b-1),a(b-1),a(b-1);(3) b(a-2);(4)(a-2)(b-1).
【解析】
(1)根據(jù)題意,直接畫(huà)圖即可,注意答案不唯一,只要畫(huà)一條有兩個(gè)折點(diǎn)的折線(xiàn),得到一個(gè)封閉圖形即可.
(2)結(jié)合圖形,根據(jù)平移的性質(zhì)可知,圖1圖2圖3中空白部分的面積都可看作是以a﹣1為長(zhǎng),b為寬的長(zhǎng)方形的面積.
(3)結(jié)合圖形,通過(guò)平移,空白部分可平移為以a﹣2米為長(zhǎng),b米為寬的長(zhǎng)方形,根據(jù)長(zhǎng)方形的面積可得草地部分所占的面積.
(4)結(jié)合圖形可知,空白部分所占的面積=(a﹣2)米為長(zhǎng),(b﹣1)米為寬的長(zhǎng)方形的面積.
(1)畫(huà)圖如下:
(2)S1=ab﹣b,S=ab﹣b,S2=ab﹣b,S3=ab﹣b
理由:1.將“小路”沿著左右兩個(gè)邊界“剪去”;2.將左側(cè)的草地向右平移一個(gè)單位;3.得到一個(gè)新的矩形.在新得到的矩形中,其縱向?qū)捜匀皇?/span>b.其水平方向的長(zhǎng)變成了a﹣1,所以草地的面積就是:b(a﹣1)=ab﹣b.
(3)∵縱向小路任何地方的水平寬度都是2個(gè)單位,∴空白部分表示的草地面積是(a﹣2)b;
(4)∵縱向小路任何地方的水平寬度都是2個(gè)單位,橫向小路任何地方的寬度都是1個(gè)單位,∴空白部分表示的草地面積是(a﹣2)(b﹣1).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,OB是∠AOC的平分線(xiàn),OD是∠COE的平分線(xiàn).
(1)如果∠AOC=70°,∠COE=50°,那么∠BOD是多少度?
(2)如果∠BOD=70°,那么∠AOE是多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:拋物線(xiàn)y=ax2+bx+c交y軸于點(diǎn)C(0,4),對(duì)稱(chēng)軸x=2與x軸交于點(diǎn)D,頂點(diǎn)為M,且DM=OC+OD,
(1)求拋物線(xiàn)的解析式;
(2)設(shè)點(diǎn)P(x,y)是第一象限內(nèi)該拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),△PCD的面積為S,求S關(guān)于x的函數(shù)關(guān)系式,寫(xiě)出自變量x的取值范圍,并求當(dāng)x取多少時(shí),S的值最大,最大是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)y= x+4與x軸、y軸分別交于點(diǎn)A和點(diǎn)B,點(diǎn)C、D分別為線(xiàn)段AB、OB的中點(diǎn),點(diǎn)P為OA上一動(dòng)點(diǎn),PC+PD值最小時(shí)點(diǎn)P的坐標(biāo)為( )
A.(﹣3,0)
B.(﹣6,0)
C.(﹣ ,0)
D.(﹣ ,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電子元件廠(chǎng)準(zhǔn)備生產(chǎn)1200個(gè)電子元件,生產(chǎn)一半后,由于要盡快投入市場(chǎng),該廠(chǎng)提高了生產(chǎn)效率,每天生產(chǎn)的電子元件個(gè)數(shù)是原來(lái)的1.2倍,結(jié)果提前2天完成了任務(wù),求該廠(chǎng)后來(lái)每天生產(chǎn)電子元件多少個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中BA=BC,點(diǎn)D是AB延長(zhǎng)線(xiàn)上一點(diǎn),DF⊥AC于F交BC于E,
求證:△DBE是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知OA⊥OB,∠AOD=∠BOC由此判定OC⊥OD,下面是推理過(guò)程,請(qǐng)?zhí)羁?/span>.
解:∵OA⊥OB(已知)
所以_____=90°(________)
因?yàn)?/span>_____=∠AOD-∠AOC,____=∠BOC-∠AOC,∠AOD=∠BOC,
所以______=_____(等量代換)
所以______=90°
所以OC⊥OD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,點(diǎn)D在BC上,點(diǎn)E在AB上,BD=BE,要使△ADB≌△CEB,還需添加一個(gè)條件.
(1)給出下列四個(gè)條件:①AD=CE ②AE=CD ③∠BAC=∠BCA ④∠ADB=∠CEB請(qǐng)你從中選出一個(gè)能使△ADB≌△CEB的條件,并給出證明;
你選出的條件是
證明:
(2)在(1)中所給出的條件中,能使△ADB≌△CEB的還有哪些?直接在題后橫線(xiàn)上寫(xiě)出滿(mǎn)足題意的條件序號(hào):
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知AB=AC,AD=AE,∠BAC=∠DAE,直線(xiàn)BD、CE交于點(diǎn)G,
(1)如圖1,點(diǎn)D在AC上,求證:∠BGC=∠BAC;
(2)如圖2,當(dāng)點(diǎn)D不在AC上,(1)中的結(jié)論還成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com