在直角梯形OABC中,OA∥BC,A、B兩點(diǎn)的坐標(biāo)分別為A(13,0),B(11,12),動點(diǎn)P、Q同時(shí)從O、B兩點(diǎn)出發(fā),點(diǎn)P以每秒2個(gè)單位的速度沿OA向終點(diǎn)A運(yùn)動,點(diǎn)Q以每秒1個(gè)單位的速度沿BC向C運(yùn)動,當(dāng)點(diǎn)P停止運(yùn)動時(shí),點(diǎn)Q同時(shí)停止運(yùn)動.線段OB、PQ相交于點(diǎn)D,過點(diǎn)D作DE∥OA,交AB于點(diǎn)E,射線QE交軸于點(diǎn)F(如圖).設(shè)動點(diǎn)P、Q運(yùn)動時(shí)間為t(單位:秒),則:
(1)當(dāng)t= ▲ 時(shí),四邊形PABQ是平行四邊形;
(2)當(dāng)t= ▲ 時(shí),△PQF是等腰三角形.
(1分);2或1或或(對幾個(gè)得幾分,全對得5分)
解析:(1)設(shè)OP=2t,QB=t,PA=13-2t,要使四邊形PABQ為平行四邊形,則13-2t=t
∴ t=
(2)∵OB∥DE∥PA,
∴ QB/AF=QE/EF=BD/DO=QD/DP= 12,
∴AF=2QB=2t,
∴PF=OA=13
①Q(mào)P=FQ,作QG⊥x軸于G,則11-t-2t=2t+13-(11-t),
∴ t=;
②PQ=FP,
∴ (11-3t)2+122=13,
∴ t=2或;
③FQ=FP, [13+2t-(11-t)]2+122=13,
∴t=1;
綜上,當(dāng) t=或2或或1時(shí),△PQF是等腰三角形
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
3 | 5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com