已知A(8,0),B(0,6),C(0,-2),連接AB,過(guò)點(diǎn)C的直線l與AB交于點(diǎn)P.
(1)如圖1,當(dāng)PB=PC時(shí),求點(diǎn)P的坐標(biāo);
(2)如圖2,設(shè)直線l與x軸所夾的銳角為α,且tanα=數(shù)學(xué)公式,連接AC,求直線l與x軸的交點(diǎn)E的坐標(biāo)及△PAC的面積.

解:(1)設(shè)點(diǎn)P的坐標(biāo)為(x,y),
過(guò)點(diǎn)P作PD⊥y軸于D,則BD=DC=4.
∵OB=6,∴OD=2,
即y=2.
由題意可設(shè)AB的解析式為y=mx+6.
∵A(8,0)
∴m=-
∴AB的解析式為y=-x+6. (1)
當(dāng)y=2時(shí),2=-x+6,
解得x=
∴P(,2).

(2)∵tanα=,OC=2,
∴OE=
∴E(,0).
由題意可設(shè)直線l的解析式為y=kx-2,
∵直線l經(jīng)過(guò)E(,0),
k-2=0,∴k=
∴直線l的解析式為y=x-2. (2)
由(1)(2)得x-2=-x+6,
解得x=4.
把x=4代入y=-x+6得y=3,
∴P(4,3).
S△PAC=S△PAE+S△CAE=×(8-)×3+×(8-)×2=16.
分析:(1)設(shè)點(diǎn)P的坐標(biāo)為(x,y),過(guò)點(diǎn)P作PD⊥y軸于D,根據(jù)OB=6,由題意可設(shè)AB的解析式為y=mx+6把A(8,0)代入解析式就可以求出函數(shù)的解析式.
(2)先求出E點(diǎn)的坐標(biāo),就可以求出直線l的解析式.求出兩條直線的交點(diǎn)P,再根據(jù)S△PAC=S△PAE+S△CAE就可以求解.
點(diǎn)評(píng):本題主要考查了待定系數(shù)法求函數(shù)解析式,并且考查不規(guī)則圖形的面積可以轉(zhuǎn)化為求一些規(guī)則圖形或易求面積的圖形的和或差的計(jì)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

4、如圖為某班35名學(xué)生在某次社會(huì)實(shí)踐活動(dòng)中揀廢棄的礦泉水瓶情況條形統(tǒng)計(jì)圖,圖中上面部分?jǐn)?shù)據(jù)破損導(dǎo)致數(shù)據(jù)不完全.已知此次活動(dòng)中學(xué)生揀到礦泉水瓶個(gè)數(shù)中位數(shù)是5個(gè),則根據(jù)統(tǒng)計(jì)圖,下列選項(xiàng)中的( 。⿺(shù)值無(wú)法確定.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知c<0,0<|a|<|b|<|c|,
b2c
a
=-
b
a
ac
,則a、b、c由小到大的順序排列
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知矩形ABCD,OA與x軸正半軸夾角為60°,點(diǎn)A的橫坐標(biāo)為2,點(diǎn)C的橫坐標(biāo)為-
3
2
,則點(diǎn)B的坐標(biāo)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知方程組
x+y=2
y+z=3
z+x=7
,則x+y+z等于
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)a、b(a≠b)分別滿足a2+2a=2,b2+2b=2.求
1
a
+
1
b
的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案