【題目】如圖,直線l與⊙O相離,OA⊥l于點(diǎn)A,交⊙O于點(diǎn)B,點(diǎn)C是⊙O上一點(diǎn),連接CB并延長(zhǎng)交直線l于點(diǎn)D,使AC=AD.
(1)求證:AC是⊙O的切線;
(2)若BD=2,OA=4,求線段BC的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)
【解析】試題分析:(1)連接OC,如圖,根據(jù)等腰三角形的性質(zhì),由OB=OC,AC=AD得到∠OBC=∠OCB,∠ACD=∠ADC,再由OA⊥l得∠ADC+∠ABD=90°,加上∠ABD=∠OBC,于是有∠OCB+∠ACD=90°,即∠ACO=90°,然后根據(jù)切線的判定定理即可得到結(jié)論;
(2)如圖1,作直徑BE,連接CE,設(shè) O半徑為r,則AB=OA-OB=4-r,根據(jù)勾股定理得AD2=BD2-AB2=12-(4-r)2,AC2=AO2-OC2=16-r2,由于AC=AD,則12-(4-r)2=16-r2,解得r=,再證明Rt△ABD∽Rt△CBE,然后利用相似比可計(jì)算出BC.
(1)證明:連接OC,如圖,
∵OB=OC,AC=AD
∴∠OBC=∠OCB,∠ACD=∠ADC,
∵OA⊥l,
∴∠ADC+∠ABD=90°,
而∠ABD=∠OBC,
∴∠OCB+∠ACD=90°,
∴∠ACO=90°
∴OC⊥AC,
∴AC是⊙O的切線;
(2)解:如圖1,作直徑BE,連接CE,
設(shè)⊙O半徑為r,則AB=OA﹣OB=4﹣r,
在Rt△ABD中,∵AD2=BD2﹣AB2=12﹣(4﹣r)2,
在Rt△AOC中,∵AC2=AO2﹣OC2=16﹣r2,
而AC=AD,
∴12﹣(4﹣r)2=16﹣r2,解得r=,
∵BE為⊙O直徑,
∴∠BCE=90°,
又∵∠ABD=∠EBC,
∴Rt△ABD∽Rt△CBE,
∴,即,
∴BC=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四邊形ABCD中,AB∥DC,AB=AD,對(duì)角線AC,BD交于點(diǎn)O,AC平分∠BAD,過(guò)點(diǎn)C作CE∥DB交AB的延長(zhǎng)線于點(diǎn)E,連接OE.
(1)求證:四邊形ABCD是菱形;
(2)若∠DAB=60°,且AB=4,求OE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)在下列橫線上用含有a,b的代數(shù)式表示相應(yīng)圖形的面積.
① ② ③ ④
(2)通過(guò)拼圖,你發(fā)現(xiàn)前三個(gè)圖形的面積與第四個(gè)圖形面積之間有什么關(guān)系?請(qǐng)用數(shù)學(xué)式子表達(dá):.
(3)利用(2)的結(jié)論計(jì)算10.232+20.46×9.77+9.772的值.(寫(xiě)出計(jì)算過(guò)程)
(4)已知M=-2x2-3x-6, N=-3x2-5x-7,利用(2)的結(jié)論,求M與N的大小關(guān)系為( )
A. M>N B. M<N C. M≥N D.不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知多項(xiàng)式與多項(xiàng)式的和中不含有項(xiàng)
(1)_____,_____.
(2)計(jì)算:和的值,并通過(guò)計(jì)算的結(jié)果,猜想和的關(guān)系.
(3)請(qǐng)你利用猜想計(jì)算:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某檢修小組乘一輛汽車(chē)沿東西方向方向檢修路,約定向東走為正,某天從地出發(fā)到收工時(shí)行走記錄(單位:):,求:
(1)收工時(shí)檢修小組在地的在哪一邊,距地多遠(yuǎn)?
(2)若汽車(chē)耗油升/每千米,開(kāi)工時(shí)儲(chǔ)存升汽油,用到收工時(shí)中途是否需要加油;
(3)若加油,最少加多少升才能保證收工后返回地?若不需要加油,到收工時(shí),還剩多少升汽油?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)A和B(1,0),與y軸交于點(diǎn)C,直線y=x﹣2經(jīng)過(guò)A,C兩點(diǎn),拋物線的頂點(diǎn)為D.
(1)求拋物線的解析式和頂點(diǎn)D的坐標(biāo);
(2)在y軸上是否存在一點(diǎn)G,使得GD+GB的值最?若存在,求出點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)在拋物線的對(duì)稱(chēng)軸上是否存在點(diǎn)P,使△PAB是以AB為腰的等腰三角形?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC, ∠B﹦90°,AB﹦8㎝,AD﹦24㎝,BC﹦26㎝,點(diǎn)p從點(diǎn)A出發(fā),以1㎝/s的速度向點(diǎn)D運(yùn)動(dòng);點(diǎn)Q從點(diǎn)C同時(shí)出發(fā),以3㎝/s的速度向點(diǎn)B運(yùn)動(dòng),規(guī)定其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng). 設(shè)運(yùn)動(dòng)時(shí)間為t s.
(1)t為何值時(shí),四邊形PQCD為平行四邊形?
(2)t為何值時(shí),四邊形PQCD為等腰梯形?(等腰梯形的兩腰相等,兩底角相等)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△MNQ中,MN=11,NQ=,,矩形ABCD,BC=4,CD=3,點(diǎn)A與M重合,AD與MN重合.矩形ABCD沿著MQ方向平移,且平移速度為每秒5個(gè)單位,當(dāng)點(diǎn)A與Q重合時(shí)停止運(yùn)動(dòng).
(1)MQ的長(zhǎng)度是 ;
(2)運(yùn)動(dòng) 秒,BC與MN重合;
(3)設(shè)矩形ABCD與△MNQ重疊部分的面積為S,運(yùn)動(dòng)時(shí)間為t,求出S與t之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD為菱形,且點(diǎn)D(﹣4,0)在x軸上,點(diǎn)B和點(diǎn)C(0,3)在y軸上,反比例函數(shù)y=(k≠0)過(guò)點(diǎn)A,點(diǎn)E(﹣2,m)、點(diǎn)F分別是反比例函數(shù)圖象上的點(diǎn),其中點(diǎn)F在第一象限,連結(jié)OE、OF,以線段OE、OF為鄰邊作平行四邊形OEGF.
(1)寫(xiě)出反比例函數(shù)的解析式;
(2)當(dāng)點(diǎn)A、O、F在同一直線上時(shí),求出點(diǎn)G的坐標(biāo);
(3)四邊形OEGF周長(zhǎng)是否有最小值?若存在,求出這個(gè)最值,并確定此時(shí)點(diǎn)F的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com