【題目】如圖,長方形中,,,點在邊上,且,點是邊上一點,連接,將四邊形沿折疊,若點的對稱點恰好落在邊上,則的長為____.
【答案】3.
【解析】
根據(jù)矩形的性質(zhì)得到BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,求得CD=6,BD=2,根據(jù)折疊可知A′D=AD,A′E=AE,可證明Rt△A′CD≌Rt△DBA,根據(jù)全等三角形的性質(zhì)得到A′C=BD=2,A′O=4,然后在Rt△A′OE中根據(jù)勾股定理列出方程求解即可.
解:如圖,
∵四邊形OABC是矩形,
∴BC=OA=8,OC=AB=6,∠C=∠B=∠O=90°,
∵CD=3DB,
∴CD=6,BD=2,
∴CD=AB,
∵將四邊形ABDE沿DE折疊,若點A的對稱點A′恰好落在邊OC上,
∴A′D=AD,A′E=AE,
在Rt△A′CD與Rt△DBA中,
,
∴Rt△A′CD≌Rt△DBA(HL),
∴A′C=BD=2,
∴A′O=4,
∵A′O2+OE2=A′E2,
∴42+OE2=(8-OE)2,
∴OE=3,
故答案是:3.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AC=BC,∠ACB=90°,D為AB邊的中點,以D為直角頂點的Rt△DEF的另兩個頂點E,F分別落在邊AC,CB(或它們的延長線)上.
(1)如圖1,若Rt△DEF的兩條直角邊DE,DF與△ABC的兩條直角邊AC,BC互相垂直,則S△DEF+S△CEF=S△ABC,求當(dāng)S△DEF=S△CEF=2時,AC邊的長;
(2)如圖2,若Rt△DEF的兩條直角邊DE,DF與△ABC的兩條直角邊AC,BC不垂直,S△DEF+S△CEF=S△ABC,是否成立?若成立,請給予證明;若不成立,請直接寫出S△DEF,S△CEF,S△ABC之間的數(shù)量關(guān)系;
(3)如圖3,若Rt△DEF的兩條直角邊DE,DF與△ABC的兩條直角邊AC,BC不垂直,且點E在AC的延長線上,點F在CB的延長線上,S△DEF+S△CEF=S△ABC是否成立?若成立,請給予證明;若不成立,請直接寫出S△DEF,S△CEF,S△ABC之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和爸爸周末到濕地公園進(jìn)行鍛煉,兩人同時從家出發(fā),勻速騎共享單車到達(dá)公園入口,然后一同勻速步行到達(dá)驛站,到達(dá)驛站后小明的爸爸立即又騎共享單車按照來時騎行速度原路返回,在公園入口處改為步行,并按來時步行速度原路回家,小明到達(dá)驛站后逗留了10分鐘之后騎車回家,爸爸在鍛煉過程中離出發(fā)地的路程與出發(fā)的時間的函數(shù)關(guān)系如圖.
(1)圖中m=_____,n=_____;(直接寫出結(jié)果)
(2)小明若要在爸爸到家之前趕上,問小明回家騎行速度至少是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點D、E、F分別在AB、BC、AC上,且∠ADF+∠DEC=180°,∠AFE=∠BDE.
(1)如圖1,當(dāng)DE=DF時,圖1中是否存在于AB相等的線段?若存在,請找出并加以證明.若不存在說明理由.
(2)如圖2,當(dāng)DE=kDF(其中0<k<1)時,若∠A=90°,AF=m,求BD的長(用含k,m的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB是⊙O的直徑,AC和BD相交于點E,且DC2=CECA.
(1)求證:BC=CD;
(2)分別延長AB,DC交于點P,若PB=OB,CD=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明騎自行車從甲地到乙地,圖中的折線表示小明行駛的路程與所用時間之間的函數(shù)關(guān)系.試根據(jù)函數(shù)圖像解答下列問題:
(1)小明在途中停留了____,小明在停留之前的速度為____;
(2)求線段的函數(shù)表達(dá)式;
(3)小明出發(fā)1小時后,小華也從甲地沿相同路徑勻速向乙地騎行,時,兩人同時到達(dá)乙地,求為何值時,兩人在途中相遇.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市每天都用360元從批發(fā)商城批發(fā)甲乙兩種型號“垃圾分類”垃圾桶進(jìn)行零售,批發(fā)價和零售價如下表所示:
批發(fā)價(元個) | 零售價(元/個) | |
甲型號垃圾桶 | 12 | 16 |
乙型號垃圾桶 | 30 | 36 |
若設(shè)該超市每天批發(fā)甲型號“垃圾分類”垃圾桶x個,乙型號“垃圾分類”垃圾桶y個,
(1)求y關(guān)于x的函數(shù)表達(dá)式.
(2)若某天該超市老板想將兩種型號的“垃圾分類”垃圾桶全部售完后,所獲利潤率不低于30%,則該超市至少批發(fā)甲型號“垃圾分類”垃圾桶多少個?(利潤率=利潤/成本).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,BD為△ABC的角平分線,且BD=BC,E為BD延長線上的一點,BE=BA,過E作EF⊥AB,F為垂足,下列結(jié)論:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④AE=EC,其中正確的是________(填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:在四邊形ABFC中,=90的垂直平分線EF交BC于點D,交AB于點E,且CF=AE
(1)試探究,四邊形BECF是什么特殊的四邊形;
(2)當(dāng)的大小滿足什么條件時,四邊形BECF是正方形?請回答并證明你的結(jié)論.
(特別提醒:表示角最好用數(shù)字)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com