【題目】下面圖形:四邊形,三角形,梯形,平行四邊形,菱形,矩形,正方形,圓,從中任取一個圖形既是軸對稱圖形又是中心對稱圖形的概率是

【答案】
【解析】解:∵在四邊形,三角形,梯形,平行四邊形,菱形,矩形,正方形,圓8個圖形中,既是軸對稱圖形又是中心對稱圖形的有正方形、菱形、矩形、圓四個,
∴從中任取一個圖形既是軸對稱圖形又是中心對稱圖形的概率為 ,
所以答案是
【考點精析】利用中心對稱及中心對稱圖形對題目進(jìn)行判斷即可得到答案,需要熟知如果把一個圖形繞著某一點旋轉(zhuǎn)180度后能與另一個圖形重合,那么我們就說,這兩個圖形成中心對稱;如果把一個圖形繞著某一點旋轉(zhuǎn)180度后能與自身重合,那么我們就說,這個圖形成中心對稱圖形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長線分別交AD于點E、F,連接BD、DP,BD與CF相交于點H,給出下列結(jié)論: ①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PHPC
其中正確的是(

A.①②③④
B.②③
C.①②④
D.①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】形如半圓型的量角器直徑為4cm,放在如圖所示的平面直角坐標(biāo)系中(量角器的中心與坐標(biāo)原點O重合,零刻度線在x軸上),連接60°和120°刻度線的一個端點P、Q,線段PQ交y軸于點A,則點A的坐標(biāo)為(
A.(﹣1,
B.(0,
C.( ,0)
D.(1,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩個全等的等腰直角三角板(斜邊長為2)如圖放置,其中一塊三角板45°角的頂點與另一塊三角板ABC的直角頂點A重合.若三角板ABC固定,當(dāng)另一個三角板繞點A旋轉(zhuǎn)時,它的直角邊和斜邊所在的直線分別與邊BC交于點E、F.設(shè)BF=x,CE=y,則y關(guān)于x的函數(shù)圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在以O(shè)為圓心的兩個同心圓中,小圓的半徑為1,AB與小圓相切于點A,與大圓相交于點B,大圓的弦BC⊥AB于點B,過點C作大圓的切線CD交AB的延長線于點D,連接OC交小圓于點E,連接BE、BO.
(1)求證:△AOB∽△BDC;
(2)設(shè)大圓的半徑為x,CD的長為y: ①求y與x之間的函數(shù)關(guān)系式;
②當(dāng)BE與小圓相切時,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為8的正方形ABCD中,點O為AD上一動點(4<OA<8),以O(shè)為圓心,OA的長為半徑的圓交邊CD于點M,連接OM,過點M作⊙O的切線交邊BC于N.

(1)求證:△ODM∽△MCN;
(2)設(shè)DM=x,求OA的長(用含x的代數(shù)式表示);
(3)在點O的運動過程中,設(shè)△CMN的周長為P,試用含x的代數(shù)式表示P,你能發(fā)現(xiàn)怎樣的結(jié)論?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=1,BC=2,BC在x軸上,一次函數(shù)y=kx﹣2的圖象經(jīng)過A、C兩點,并與y軸交于點E,反比例函數(shù)y= 的圖象經(jīng)過點A.

(1)寫出點E的坐標(biāo);
(2)求一次函數(shù)和反比例函數(shù)的解析式;
(3)根據(jù)圖象寫出當(dāng)x>0時,一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】同慶中學(xué)為豐富學(xué)生的校園生活,準(zhǔn)備從軍躍體育用品商店一次性購買若干個足球和籃球(每個足球的價格相同,每個籃球的價格相同),若購買3個足球和2個籃球共需310元,購買2個足球和5個籃球共需500元.
(1)購買一個足球、一個籃球各需多少元?
(2)根據(jù)同慶中學(xué)的實際情況,需從軍躍體育用品商店一次性購買足球和籃球共96個,要求購買足球和籃球的總費用不超過5720元,這所中學(xué)最多可以購買多少個籃球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑作半圓⊙O,交BC于點D,連接AD,過點D作DE⊥AC,垂足為點E,交AB的延長線于點F.
(1)求證:EF是⊙0的切線.
(2)如果⊙0的半徑為5,sin∠ADE= ,求BF的長.

查看答案和解析>>

同步練習(xí)冊答案