【題目】一個三位自然數(shù)(百位上的數(shù)字為,十位上的數(shù)字為,個位上的數(shù)字為). 若滿足,則稱這個三位數(shù)為“和悅數(shù)”,并規(guī)定. 如231,因為它的百位上的數(shù)字2與個位上的數(shù)字1之和等于十位上的數(shù)字3. 所以231是“和悅數(shù)”,所以.
(1)請任意寫出兩個“和悅數(shù)”,并猜想任意一個“和悅數(shù)”是否是11的倍數(shù),請說明理由;
(2)已知有兩個十位上的數(shù)字相同的“和悅數(shù)”,若,求的值.
【答案】(1)例如:253,374都是和悅數(shù),任意一個“和悅數(shù)”是11的倍數(shù),理由見詳解; (2)99或495
【解析】
(1)根據(jù)“和悅數(shù)”的定義,用代數(shù)式表示和悅數(shù),即可得到結(jié)論;
(2)設(shè)m=,n=,由,得,從而得或,即==,進(jìn)而得到答案.
(1)例如:253,374都是和悅數(shù),任意一個“和悅數(shù)”是11的倍數(shù),理由如下:
設(shè)是和悅數(shù),則,
∴=100a+10b+c=100a+10(a+c)+c=110a+11c=11(10a+c),
∴任意一個“和悅數(shù)”是11的倍數(shù);
(2)設(shè)m=,n=,
∵,
∴
=
=,
∵ 都是整數(shù),,
∴或,
∵=
=,
∵,
∴=
=,
∴=99或495.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)系內(nèi)有A(﹣1,2)、B(﹣3,1)、C(0,﹣1).
(1)畫出△ABC關(guān)于O點成中心對稱的△A1B1C1,直接寫出B1:( , )
(2)將△ABC繞O點順時針方向旋轉(zhuǎn)90°后得到△A2B2C2,畫出旋轉(zhuǎn)后的圖形并直接寫出B2坐標(biāo):( , )
(3)求(2)中線段AB所掃過的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以為直徑作半圓,點是半圓弧的中點,點是上的一個動點(點不與點、重合),交于點,延長、交于點,過點作,垂足為.
(1)求證:是的切線;
(2)若的半徑為1,當(dāng)點運動到的三等分點時,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=k1x+b的圖象與x軸、y軸分別交于A,B兩點,與反比例函數(shù)y=的圖象分別交于C,D兩點,點C(2,4),點B是線段AC的中點.
(1)求一次函數(shù)y=k1x+b與反比例函數(shù)y=的解析式;
(2)求△COD的面積;
(3)直接寫出當(dāng)x取什么值時,k1x+b<.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)規(guī)定,我市將垃圾分為了四類:可回收物、易腐垃圾、有害垃圾和其他垃圾四大類. 現(xiàn)有投放這四類垃圾的垃圾桶各1個,若將用不透明垃圾袋分類打包好的兩袋不同垃圾隨機投進(jìn)兩個不同的垃圾桶,投放正確的概率是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】通達(dá)橋即小店汾河橋,是太原新建成的一座跨汾大橋,也是太原首座懸索橋.橋的主塔由曲線形拱門組成,取意“時代之門”.無人機社團(tuán)的同學(xué)計劃利用無人機設(shè)備測量通達(dá)橋拱門的高度.如圖,他們先將無人機升至距離橋面50米高的點C處,測得橋的拱門最高點A的仰角∠ACF為30°,再將無人機從C處豎直向上升高200米到點D處,測得點A的俯角∠ADG為45°.已知點A,B,C,D,E在同一平面內(nèi),求通達(dá)橋拱門最高點A距離橋面BE的高度AB.(結(jié)果保留整數(shù),參考數(shù)據(jù):≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某數(shù)學(xué)活動小組選定測量小河對岸大樹BC的高度,他們在斜坡上D處測得大樹頂端B的仰角是30°,朝大樹方向下坡走6米到達(dá)坡底A處,在A處測得大樹頂端B的仰角是45°,若坡角∠FAE=30°,求大樹的高度(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,勾股定理反映了直角三角形三條邊的關(guān)系: a2+b2=c2, 而a2, b2, c2又可以看成是以a,b, c為邊長的正方形的面積.如圖,在Rt△ABC中,∠ACB=90°,BC=a, AC=b,O為AB的中點.分別以AC,BC 為邊向△ABC外作正方形ACFG,BCED,連結(jié)OF, EF, OE,則△OEF的面積為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com