【題目】二次函數(shù)y=ax2-12ax+36a-5的圖象在4<x<5這一段位于x軸下方,在8<x<9這一段位于x軸上方,則a的值為___________

【答案】

【解析】

根據(jù)拋物線頂點式得到對稱軸為直線x=6,在4<x<5這一段位于x軸的上方,利用拋物線對稱性得到拋物線在7<x<8這一段位于x軸的上方,而圖象在8<x<9這一段位于x軸的下方,于是可得拋物線過點(8,0),然后把(8,0)代入y=ax2-12ax+36a-5可求出a的值.

∵拋物線y=ax12ax+36a5的對稱軸為直線x=6,

而拋物線在4<x<5這一段位于x軸的下方,

∴拋物線在7<x<8這一段位于x軸的下方,

∵拋物線在8<x<9這一段位于x軸的上方,

∴拋物線過點(8,0),

(8,0)代入y=ax12ax+36a564a96a+36a5=0,

解得:a= .

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半徑為1個單位的圓片上有一點A與數(shù)軸上的原點重合,AB是圓片的直徑.

(1)把圓片沿數(shù)軸向左滾動1周,點A到達(dá)數(shù)軸上點C的位置,點C表示的數(shù)是______數(shù)(填“無理”或“有理”),這個數(shù)是______;

(2)把圓片沿數(shù)軸滾動2周,點A到達(dá)數(shù)軸上點D的位置,點D表示的數(shù)是______;

(3)圓片在數(shù)軸上向右滾動的周數(shù)記為正數(shù),圓片在數(shù)軸上向左滾動的周數(shù)記為負(fù)數(shù),依次運動情況記錄如下:+2,-1,-5,+4,+3,-2當(dāng)圓片結(jié)束運動時,A點運動的路程共有多少?此時點A所表示的數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABO在平面直角坐標(biāo)系中,O為原點,OBx軸上,∠AOB60°,點A坐標(biāo)為(3,3),點C的坐標(biāo)為(0,3),點D在第二象限,且ABO≌△DCO

1)請直接寫出點D的坐標(biāo)_____;

2)點P在直線BC上,且PCD是等腰直角三角形,請畫出圖形并求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,在以為原點的平面直角坐標(biāo)系中,拋物線軸交于、兩點,與軸交于點,連接,,直線過點且平行于軸,

求拋物線對應(yīng)的二次函數(shù)的解析式;

為拋物線上一動點,是否存在直線使得點到直線的距離與的長恒相等?若存在,求出此時的值;

如圖,若、為上述拋物線上的兩個動點,且,線段的中點為,求點縱坐標(biāo)的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,則下列結(jié)論:①;②;③;④平分,正解的有(

A.①②③B.①③④

C.②③④D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABCBC邊上的垂直平分線DEBAC得平分線交于點EEFABAB的延長線于點F,EGAC交于點G

求證:(1BF=CG;(2AF=AB+AC).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,點、、分別在、、邊上,且,.

(1)求證:是等腰三角形;

(2)當(dāng)時,求的度數(shù);

(3)當(dāng)為多少度時,?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為進(jìn)一步促進(jìn)“美麗校園”創(chuàng)建工作,某校團(tuán)委計劃對八年級五個班的文化建設(shè)進(jìn)行檢查,每天隨機(jī)抽查一個班級,第一天從五個班級隨機(jī)抽取一個進(jìn)行檢查,第二天從剩余的四個班級再隨機(jī)抽取一個進(jìn)行檢查,第三天從剩余的三個班級再隨機(jī)抽取一個進(jìn)行檢查…,以此類推,直到檢查完五個班級為止,且每個班級被選中的機(jī)會均等

(1)第一天,八(1)班沒有被選中的概率是   ;

(2)利用網(wǎng)狀圖或列表的方法,求前兩天八(1)班被選中的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校運動會需購買A、B兩種獎品,若購買A種獎品3件和B種獎品2件,共需60元;若購買A種獎品5件和B種獎品3件,共需95元.

(1)求A、B兩種獎品的單價各是多少元?

(2)學(xué)校計劃購買A、B兩種獎品共100件,且A種獎品的數(shù)量不大于B種獎品數(shù)量的3倍,設(shè)購買A種獎品m件,購買費用為W元,寫出W(元)與m(件)之間的函數(shù)關(guān)系式.請您確定當(dāng)購買A種獎品多少件時,費用W的值最少.

查看答案和解析>>

同步練習(xí)冊答案