【題目】如圖,AD平分∠BAC交BC于點(diǎn)D,點(diǎn)F在BA的延長(zhǎng)線上,點(diǎn)E在線段CD上,EF與AC相交于點(diǎn)G,∠BDA+∠CEG=180°.
(1)AD與EF平行嗎?請(qǐng)說明理由;
(2)若點(diǎn)H在FE的延長(zhǎng)線上,且∠EDH=∠C,則∠F與∠H相等嗎,請(qǐng)說明理由.
【答案】見解析
【解析】分析:(1)求出∠ADE+∠FEB=180°,根據(jù)平行線的判定推出即可;
(2)根據(jù)角平分線定義得出∠BAD=∠CAD,推出HD∥AC,根據(jù)平行線的性質(zhì)得出∠H=∠CGH,∠CAD=∠CGH,推出∠BAD=∠F即可.
詳解:(1)AD∥EF.
理由如下:∵∠BDA+∠CEG=180°,∠ADB+∠ADE=180°,∠FEB+∠CEF=180°
∴∠ADE+∠FEB=180°,∴AD∥EF;
(2)∠F=∠H,理由是:
∵AD平分∠BAC,∴∠BAD=∠CAD.
∵∠EDH=∠C,∴HD∥AC,∴∠H=∠CGH.
∵AD∥EF,∴∠CAD=∠CGH,∴∠BAD=∠F,∴∠H=∠F.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程x2﹣(m+2)x+(2m﹣1)=0.
(1)求證:方程恒有兩個(gè)不相等的實(shí)數(shù)根;
(2)若此方程的一個(gè)根是1,請(qǐng)求出方程的另一個(gè)根,并求以此兩根為邊長(zhǎng)的直角三角形的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面直角坐標(biāo)系中有一點(diǎn).
(1)點(diǎn)M到y軸的距離為1時(shí),M的坐標(biāo)?
(2)點(diǎn)且MN//x軸時(shí),M的坐標(biāo)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次機(jī)器人測(cè)試中,要求機(jī)器人從A出發(fā)到達(dá)B處.如圖1,已知點(diǎn)A在O的正西方600cm處,B在O的正北方300cm處,且機(jī)器人在射線AO及其右側(cè)(AO下方)區(qū)域的速度為20cm/秒,在射線AO的左側(cè)(AO上方)區(qū)域的速度為10cm/秒.
(參考數(shù)據(jù): ≈1.414, ≈1.732, ≈2.236, ≈2.449)
(1)分別求機(jī)器人沿A→O→B路線和沿A→B路線到達(dá)B處所用的時(shí)間(精確到秒);
(2)若∠OCB=45°,求機(jī)器人沿A→C→B路線到達(dá)B處所用的時(shí)間(精確到秒);
(3)如圖2,作∠OAD=30°,再作BE⊥AD于E,交OA于P.試說明:從A出發(fā)到達(dá)B處,機(jī)器人沿A→P→B路線行進(jìn)所用時(shí)間最短.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C:y=ax2+bx+c(a<0)過原點(diǎn),與x軸的另一個(gè)交點(diǎn)為B(4,0),A為拋物線C的頂點(diǎn).
(1)如圖1,若∠AOB=60°,求拋物線C的解析式;
(2)如圖2,若直線OA的解析式為y=x,將拋物線C繞原點(diǎn)O旋轉(zhuǎn)180°得到拋物線C′,求拋物線C、C′的解析式;
(3)在(2)的條件下,設(shè)A′為拋物線C′的頂點(diǎn),求拋物線C或C′上使得PB=PA′的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,BC=a,AC=b,AB=c,設(shè)c為最長(zhǎng)邊,當(dāng)a2+b2=c2時(shí),△ABC是直角三角形;當(dāng)a2+b2≠c2時(shí),利用代數(shù)式a2+b2和c2的大小關(guān)系,探究△ABC的形狀(按角分類).
(1)當(dāng)△ABC三邊分別為6、8、9時(shí),△ABC為 三角形;當(dāng)△ABC三邊分別為6、8、11時(shí),△ABC為 三角形.
(2)猜想,當(dāng)a2+b2 c2時(shí),△ABC為銳角三角形;當(dāng)a2+b2 c2時(shí),△ABC為鈍角三角形.
(3)判斷當(dāng)a=2,b=4時(shí),△ABC的形狀,并求出對(duì)應(yīng)的c的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠現(xiàn)有甲種原料360千克,乙種原料290千克,計(jì)劃利用這兩種原料生產(chǎn)A、B兩種產(chǎn)品50件.生產(chǎn)一件A產(chǎn)品需要甲種原料9千克,乙種原料3千克,可獲利潤(rùn)700元;生產(chǎn)一件B產(chǎn)品,需要甲種原料4千克,乙種原料10千克,可獲利潤(rùn)1200元.
(1)設(shè)生產(chǎn)x件A種產(chǎn)品,寫出其題意x應(yīng)滿足的不等式組;
(2)由題意有哪幾種按要求安排A、B兩種產(chǎn)品的生產(chǎn)件數(shù)的生產(chǎn)方案?請(qǐng)您幫助設(shè)計(jì)出來(lái).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在y軸上,位于原點(diǎn)的下方,且距離原點(diǎn)3個(gè)單位長(zhǎng)度的點(diǎn)的坐標(biāo)是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】按下列程序進(jìn)行運(yùn)算(如圖)
規(guī)定:程序運(yùn)行到“判斷結(jié)果是否大于244”為一次運(yùn)算,若運(yùn)算進(jìn)行了5次才停止,則x的取值范圍是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com