(2013•臺(tái)州)如圖,在?ABCD中,點(diǎn)E,F(xiàn)分別在邊DC,AB上,DE=BF,把平行四邊形沿直線EF折疊,使得點(diǎn)B,C分別落在B′,C′處,線段EC′與線段AF交于點(diǎn)G,連接DG,B′G.
求證:(1)∠1=∠2;
      (2)DG=B′G.
分析:(1)根據(jù)平行四邊形得出DC∥AB,推出∠2=∠FEC,由折疊得出∠1=∠FEC=∠2,即可得出答案;
(2)求出EG=B′G,推出∠DEG=∠EGF,由折疊求出∠B′FG=∠EGF,求出DE=B′F,證△DEG≌△B′FG即可.
解答:證明:(1)∵在平行四邊形ABCD中,DC∥AB,
∴∠2=∠FEC,
由折疊得:∠1=∠FEC,
∴∠1=∠2;

(2)∵∠1=∠2,
∴EG=GF,
∵AB∥DC,
∴∠DEG=∠EGF,
由折疊得:EC′∥B′F,
∴∠B′FG=∠EGF,
∵DE=BF=B′F,
∴DE=B′F,
∴△DEG≌△B′FG(SAS),
∴DG=B′G.
點(diǎn)評(píng):本題考查了平行四邊形性質(zhì),折疊性質(zhì),平行線性質(zhì),全等三角形的性質(zhì)和判定的應(yīng)用,主要考查學(xué)生的推理能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•臺(tái)州)如圖,已知邊長(zhǎng)為2的正三角形ABC頂點(diǎn)A的坐標(biāo)為(0,6),BC的中點(diǎn)D在y軸上,且在點(diǎn)A下方,點(diǎn)E是邊長(zhǎng)為2、中心在原點(diǎn)的正六邊形的一個(gè)頂點(diǎn),把這個(gè)正六邊形繞中心旋轉(zhuǎn)一周,在此過(guò)程中DE的最小值為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•臺(tái)州)如圖,在△ABC中,點(diǎn)D,E分別在邊AB,AC上,且
AE
AB
=
AD
AC
=
1
2
,則S△ADE:S四邊形BCED的值為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•臺(tái)州)如圖,點(diǎn)B,C,E,F(xiàn)在一直線上,AB∥DC,DE∥GF,∠B=∠F=72°,則∠D=
36
36
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•臺(tái)州)如圖1,已知直線l:y=-x+2與y軸交于點(diǎn)A,拋物線y=(x-1)2+k經(jīng)過(guò)點(diǎn)A,其頂點(diǎn)為B,另一拋物線y=(x-h)2+2-h(h>1)的頂點(diǎn)為D,兩拋物線相交于點(diǎn)C.
(1)求點(diǎn)B的坐標(biāo),并說(shuō)明點(diǎn)D在直線l上的理由;
(2)設(shè)交點(diǎn)C的橫坐標(biāo)為m.
 ①交點(diǎn)C的縱坐標(biāo)可以表示為:
(m-1)2+1
(m-1)2+1
(m-h)2-h+2
(m-h)2-h+2
,由此進(jìn)一步探究m關(guān)于h的函數(shù)關(guān)系式;
 ②如圖2,若∠ACD=90°,求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案