在?ABCD中,E、F分別是AB、CD的中點(diǎn),連接AF、CE.連接AC,當(dāng)CA=CB時(shí),判斷四邊形AECF是( )

A.平行四邊形
B.矩形
C.菱形
D.正方形
【答案】分析:首先利用平行四邊形的性質(zhì)證明AE∥CF,AE=CF,可證明四邊形AECF是平行四邊形,再根據(jù)AC=BC,E是AB的中點(diǎn),可根據(jù)等腰三角形底邊上的中線與底邊上的高線重合證明∠AEC=90°,即可證明平行四邊形AECF是矩形.
解答:四邊形AECF是矩形;
證明:連接AC,
∵四邊形ABCD是平行四邊形,
∴AB=CD,
∵E、F分別是AB、CD的中點(diǎn),
∴AE=CF,
∵四邊形ABCD是平行四邊形,
∴AB∥CD,
∴AE∥CF,
∵AE=CF,
∴四邊形AECF是平行四邊形,
∵AC=BC,E是AB的中點(diǎn),
∴CE⊥AB,
∴∠AEC=90°,
∴平行四邊形AECF是矩形.
故選:B.
點(diǎn)評(píng):此題主要考查了平行四邊形的性質(zhì)與判定,以及舉矩形的判定,關(guān)鍵是熟練掌握矩形的判定方法:①矩形的定義:有一個(gè)角是直角的平行四邊形是矩形;②有三個(gè)角是直角的四邊形是矩形;③對(duì)角線相等的平行四邊形是矩形(或“對(duì)角線互相平分且相等的四邊形是矩形”).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

11、在?ABCD中,若∠A=3∠B,則∠D=
45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在?ABCD中,E、F分別為邊AB、CD的中點(diǎn),連接DE、BF、BD.
(1)求證:△ADE≌△CBF;
(2)求證:四邊形BEDF是平行四邊形;
(3)若AD⊥BD,則四邊形BFDE是什么特殊四邊形?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在?ABCD中,EF∥AB,MN∥BC,MN與EF交于點(diǎn)O,且O點(diǎn)在對(duì)角線上,圖中面積相等的四邊形有(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在?ABCD中,BD為對(duì)角線,EF垂直平分BD分別交AD、BC的于點(diǎn)E、F,交BD于點(diǎn)O.

(1)試說(shuō)明:BF=DE;
(2)試說(shuō)明:△ABE≌△CDF;
(3)如果在?ABCD中,AB=5,AD=10,有兩動(dòng)點(diǎn)P、Q分別從B、D兩點(diǎn)同時(shí)出發(fā),沿△BAE和△DFC各邊運(yùn)動(dòng)一周,即點(diǎn)P自B→A→E→B停止,點(diǎn)Q自D→F→C→D停止,點(diǎn)P運(yùn)動(dòng)的路程是m,點(diǎn)Q運(yùn)動(dòng)的路程是n,當(dāng)四邊形BPDQ是平行四邊形時(shí),求m與n滿足的數(shù)量關(guān)系.(畫(huà)出示意圖)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在?ABCD中,點(diǎn)E在邊BC上,點(diǎn)F在BC的延長(zhǎng)線上,且BE=CF.
(1)求證:∠BAE=∠CDF.
(2)判斷四邊形AEFD的形狀并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案