【題目】如圖,⊙O是△ABC的外接圓,O點在BC邊上,∠BAC的平分線交⊙O于點D,連接BD、CD,過點D作BC的平行線,與AB的延長線相交于點P.
(1)求證:PD是⊙O的切線;
(2)若AB=3,AC=4,求線段PB的長.
【答案】(1)見解析;(2)PB=.
【解析】
(1)由直徑所對的圓周角為直角得到∠BAC為直角,再由AD為角平分線,得到一對角相等,根據(jù)同弧所對的圓心角等于圓周角的2倍及等量代換確定出∠DOC為直角,與平行線中的一條垂直,與另一條也垂直得到OD與PD垂直,即可得證;
(2)由PD與BC平行,得到一對同位角相等,再由同弧所對的圓周角相等及等量代換得到∠P=∠ACD,根據(jù)同角的補角相等得到一對角相等,利用兩對角相等的三角形相似;由三角形ABC為直角三角形,利用勾股定理求出BC的長,再由OD垂直平分BC,得到DB=DC,相似三角形的性質(zhì),得比例,求出所求即可.
(1)證明:∵圓心O在BC上,
∴BC是圓O的直徑,
∴∠BAC=90°,
連接OD,
∵AD平分∠BAC,
∴∠BAC=2∠DAC,
∵∠DOC=2∠DAC,
∴∠DOC=∠BAC=90°,即OD⊥BC,
∵PD∥BC,
∴OD⊥PD,
∵OD為圓O的半徑,
∴PD是圓O的切線;
(2)∵PD∥BC,
∴∠P=∠ABC,
∵∠ABC=∠ADC,
∴∠P=∠ADC,
∵∠PBD+∠ABD=180°,∠ACD+∠ABD=180°,
∴∠PBD=∠ACD,
∴△PBD∽△DCA;
∵△ABC為直角三角形,
∴BC2=AB2+AC2=32+42=25,
∴BC=5,
∵OD垂直平分BC,
∴DB=DC,
∵BC為圓O的直徑,
∴∠BDC=90°,
在Rt△DBC中,DB2+DC2=BC2,即2DC2=BC2=25,
∴DC=DB=,
∵△PBD∽△DCA,
∴,
則PB=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為2的正方形ABCD的頂點A、B在一個半徑為2的圓上, 頂點C、D在圓內(nèi),將正方形ABCD沿圓的內(nèi)壁作無滑動的滾動.當(dāng)滾動一周回到原位置時,點C運動的路徑長為__ _.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=BC,以AB為直徑的半圓分別交AC、BC于點D、E兩點,BF與⊙O相切于點B,交AC的延長線于點F.
(1)求證:D是AC的中點;
(2)若AB=12,sin∠CAE=,求CF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 拋物線與軸交于點A(-1,0),頂點坐標(biāo)(1,n)與軸的交點在(0,2),(0,3)之間(包 含端點),則下列結(jié)論:①;②;③對于任意實數(shù)m,總成立;④關(guān)于的方程有兩個不相等的實數(shù)根.其中結(jié)論正確的個數(shù)為
A. 1 個 B. 2 個 C. 3 個 D. 4 個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】反比例函數(shù)y=(a>0,a為常數(shù))和y=在第一象限內(nèi)的圖象如圖所示,點M在y=的圖象上,MC⊥x軸于點C,交y=的圖象于點A;MD⊥y軸于點D,交y=的圖象于點B,當(dāng)點M在y=的圖象上運動時,以下結(jié)論:①S△ODB=S△OCA;②四邊形OAMB的面積不變;③當(dāng)點A是MC的中點時,則點B是MD的中點.其中正確結(jié)論是( 。
A. ①② B. ①③ C. ②③ D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情境:
在綜合與實踐課上,老師讓同學(xué)們以“矩形紙片的剪拼”為主題開展數(shù)學(xué)活動.如圖1,將矩形紙片沿對角線剪開,得到和.并且量得,.
操作發(fā)現(xiàn):
(1)將圖1中的以點為旋轉(zhuǎn)中心,按逆時針方向旋轉(zhuǎn),使,得到如圖2所示的,過點作的平行線,與的延長線交于點,則四邊形的形狀是________.
(2)創(chuàng)新小組將圖1中的以點為旋轉(zhuǎn)中心,按逆時針方向旋轉(zhuǎn),使、、三點在同一條直線上,得到如圖3所示的,連接,取的中點,連接并延長至點,使,連接、,得到四邊形,發(fā)現(xiàn)它是正方形,請你證明這個結(jié)論.
實踐探究:
(3)縝密小組在創(chuàng)新小組發(fā)現(xiàn)結(jié)論的基礎(chǔ)上,進(jìn)行如下操作:將沿著方向平移,使點與點重合,此時點平移至點,與相交于點,如圖4所示,連接,試求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為10,點E,F分別為BC,AB邊的中點.連接AE、DF,兩線交于點H,連接BH并延長,交邊AD于點G.下列結(jié)論:①△ABE≌△DAF,②cos∠BAE=,③:S四邊形CDHE=1:11,④AG=其中正確的是( )
A.①③④B.①②③
C.①④D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在四邊形ABCD中,AD∥BC,∠ABC=90°,以AB為直徑的⊙O交邊DC于E、F兩點,AD=1,BC=5,設(shè)⊙O的半徑長為r.
(1)聯(lián)結(jié)OF,當(dāng)OF∥BC時,求⊙O的半徑長;
(2)過點O作OH⊥EF,垂足為點H,設(shè)OH=y,試用r的代數(shù)式表示y;
(3)設(shè)點G為DC的中點,聯(lián)結(jié)OG、OD,△ODG是否能成為等腰三角形?如果能,試求出r的值;如不能,試說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com