【題目】如圖所示,點D是等邊△ABC內(nèi)一點,DA=13,DB=19,DC=21,將△ABD繞點A逆時針旋轉到△ACE的位置,求△DEC的周長.

【答案】53.

【解析】

先根據(jù)等邊三角形的性質得∠BAC=60°,AB=AC,再根據(jù)旋轉的性質得到AD=AE,CE=BD=19,DAE=BAC=60°,則可判斷ADE為等邊三角形,從而得到DE=AD=13,然后計算DEC的周長.

∵△ABC 為等邊三角形,

∴∠BAC=60°,AB=AC,

∵△ABD 繞點 A 逆時針旋轉到ACE 的位置,

AD=AE,CE=BD=19,DAE=BAC=60°,

∴△ADE 為等邊三角形,

DE=AD=13,

∴△DEC 的周長=DE+DC+CE=13+21+19=53.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A,B兩點的坐標分別為(2,0),(0,10),MAOB外接圓⊙C上的一點,且∠AOM=30°,則點M的坐標為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為吸引顧客,石景山萬達廣場某餐飲店推出轉盤抽獎打折活動,如圖是可以自由轉動的轉盤,轉盤被分成若干個扇形,轉動轉盤,轉盤停止后,指針所指區(qū)域內(nèi)的獎項可作為打折等級(若指針指向兩個扇形的交線時,重新轉動轉盤),其中一等獎打九折,二等獎打九五折,三等獎贈送小禮品.小明和同學周六去就餐,他們轉動一次轉盤能夠得到九折優(yōu)惠的概率是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC中,∠B=90°,AB=8 cm,BC=6 cm,P,Q是△ABC邊上的兩個動點,點P從點A開始沿A→B方向運動,且速度為1 cm,點Q從點B開始沿B→C方向運動,且速度為2 cm/s,它們同時出發(fā),設運動的時間為t s.

(1)運動幾秒時,△APC是等腰三角形?

(2)當點Q在邊CA上運動時,求能使△BCQ成為等腰三角形的運動時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為1,點F在線段CE上,且四邊形BFED為菱形,則CF的為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面內(nèi)容:我們已經(jīng)學習了《二次根式》和《乘法公式》,聰明的你可以發(fā)現(xiàn):當,時,∵,∴,當且僅當時取等號.請利用上述結論解決以下問題:

(1)時,的最小值為_______;當時,的最大值為__________

(2)時,求的最小值.

(3)如圖,四邊形ABCD的對角線AC ,BD相交于點O,△AOB、△COD的面積分別為49,求四邊形ABCD面積的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰ABC中,AB=AC,A=20°,AB上一點D,且AD=BC,過點DDEBCDE=AB,連接EC,則∠DCE的度數(shù)為(

A. 80° B. 70° C. 60° D. 45°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】材料:對于平面直角坐標系中的任意兩點,,我們把叫做,兩點間的距離公式,記作,如:,,則,兩點的距離為

請根據(jù)以上的閱讀材料,解答下列問題:

1)當,的距離,求出的值.

2)若在平面內(nèi)有一點,使有最小值,求出它最小值和此時的范圍.

3)若有最小值,請直接寫出最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖已知,于點,于點于點,,

1)若,點上一點,當點到點和點的距離相等時,求的長;

2)若,點上一點,點上一點,連接,,,求的最小值.

查看答案和解析>>

同步練習冊答案