已知⊙A與⊙B相切,兩圓的圓心距為5,⊙A的半徑為2,則⊙B的半徑為
3或7
3或7
分析:由⊙A與⊙B相切,兩圓的圓心距為5,⊙A的半徑為2,根據(jù)兩圓位置關系與圓心距d,兩圓半徑R,r的數(shù)量關系間的聯(lián)系即可求得答案.
解答:解:∵兩圓的圓心距為5,⊙A的半徑為2,
∴若⊙A與⊙B內(nèi)切,則⊙B的半徑為:5+2=7,
若⊙A與⊙B外切,則⊙B的半徑為:5-2=3;
∴⊙B的半徑為:3或7.
故答案為:3或7.
點評:此題考查了圓與圓的位置關系.此題比較簡單,注意掌握兩圓位置關系與圓心距d,兩圓半徑R,r的數(shù)量關系間的聯(lián)系是解此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知AB與⊙O相切于點C,OA=OB,OA、OB與⊙O分別交于點D、E.
(I)如圖①,若⊙O的直徑為8,AB=10,求OA的長(結(jié)果保留根號);
(II)如圖②,連接CD、CE,若四邊形ODCE為菱形,求
ODOA
的值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•市南區(qū)模擬)如圖,已知AB與⊙O相切與點C,OA=OB,⊙O的直徑為8cm,AB=6cm,則OA=
5
5
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知AB與⊙O相切于點C,OA=OB,OA,OB與⊙O分別交予點D,E

(I)如圖①,若⊙O的直徑為8,AB=10,求OA得長(結(jié)果保留根號);

(II)如圖②,連接CD,CE,若四邊形ODCE為菱形,求的值。

 

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年浙江省寧波市九年級第三次質(zhì)量分析數(shù)學試卷(解析版) 題型:填空題

已知直線與⊙O相切,若圓心O到直線的距離是5,則⊙O的半徑是   

 

查看答案和解析>>

同步練習冊答案