【題目】如圖,拋物線y=﹣x2+bx+cx軸交與A1,0),B(﹣3,0)兩點(diǎn),頂點(diǎn)為D,交y軸于C

1)求該拋物線的解析式.

2)在拋物線的對(duì)稱軸上是否存在著一點(diǎn)M使得MA+MC的值最小,若存在求出M點(diǎn)的坐標(biāo).

【答案】1y=﹣x22x+3;(2)存在.滿足條件的M點(diǎn)的坐標(biāo)為(﹣1,2).

【解析】

1)利用交點(diǎn)式寫出拋物線解析式;

2)利用配方法得到拋物線的對(duì)稱軸為直線x1,再確定C0,3),連接BC交直線x1M,如圖,利用兩點(diǎn)之間線段最短判斷此時(shí)MAMC的值最小,然后根據(jù)直線BC的解析式即可得到M點(diǎn)的坐標(biāo).

1)拋物線解析式為y=﹣(x1)(x+3),

y=﹣x22x+3;

2)存在,

y=﹣x22x+3=﹣(x+12+4,

∴拋物線的對(duì)稱軸為直線x=﹣1,

當(dāng)x0時(shí),y=﹣x22x+33,則C03),

連接BC交直線x=﹣1M,如圖,

∵點(diǎn)A與點(diǎn)B關(guān)于直線x=﹣1對(duì)稱,

MAMB

MA+MCMB+MCBC,

∴此時(shí)MA+MC的值最小,

易得直線BC的解析式為yx+3,

當(dāng)x=﹣1時(shí),yx+32

∴滿足條件的M點(diǎn)的坐標(biāo)為(﹣1,2).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊邊長(zhǎng)為2,四邊形是平行四邊形,,在同一條直線上,且點(diǎn)與點(diǎn)重合,現(xiàn)將沿的方向以每秒1個(gè)單位的速度勻速運(yùn)動(dòng),當(dāng)點(diǎn)與點(diǎn)重合時(shí)停止,則在這個(gè)運(yùn)動(dòng)過程中,與四邊形的重合部分的面積與運(yùn)動(dòng)時(shí)間之間的函數(shù)關(guān)系圖象大致是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】按要求解方程:

1)用配方法解6x2+x20

2)在解方程x22x2x時(shí),某同學(xué)的解答如下,請(qǐng)你指出解答中出現(xiàn)的錯(cuò)誤,并給出正確解題過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)學(xué)校圓周率數(shù)學(xué)社團(tuán)遇到這樣一個(gè)題目:

如圖1,在中,點(diǎn)在線段上, ,求的長(zhǎng).

經(jīng)過社團(tuán)成員討論發(fā)現(xiàn),過點(diǎn),交的延長(zhǎng)線于點(diǎn),通過構(gòu)造就可以解決問題(如圖2. 請(qǐng)回答:_______,______

2)請(qǐng)參考以上解決思路,解決問題:

如圖3,在四邊形中,對(duì)角線相交于點(diǎn),,,求的長(zhǎng)及四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線經(jīng)過A-10)、C0-3)兩點(diǎn),與x軸交于另一點(diǎn)B.

1)求此拋物線的解析式;

2)已知點(diǎn)D 在第四象限的拋物線上,求點(diǎn)D關(guān)于直線BC對(duì)稱的點(diǎn)D’的坐標(biāo);

3)在(2)的條件下,連結(jié)BD,問在x軸上是否存在點(diǎn)P,使,若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點(diǎn)A(﹣3,0),對(duì)稱軸為直線x=﹣1,給出四個(gè)結(jié)論:

b2>4ac 2a+b=0 c﹣a<0 若點(diǎn)B(﹣4,y1)、C(1,y2)為函數(shù)圖象上的兩點(diǎn),則y1<y2,其中正確結(jié)論是(

A.②④ B.②③ C.①③ D.①④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角ABC中,∠BAC=90°,AB=3,M是邊BC上的點(diǎn),連接AM.如果將ABM沿直線AM翻折后,點(diǎn)B恰好在邊AC的中點(diǎn)處,那么點(diǎn)MAC的距離是(  )

A. 1.5 B. 2 C. 2.5 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在單位長(zhǎng)度為1的正方形網(wǎng)格中,一段圓弧經(jīng)過網(wǎng)格的交點(diǎn)A、B、C.

(1)請(qǐng)完成如下操作:

①以點(diǎn)O為坐標(biāo)原點(diǎn)、豎直和水平方向?yàn)檩S、網(wǎng)格邊長(zhǎng)為單位長(zhǎng),建立平面直角坐標(biāo)系;

②根據(jù)圖形提供的信息,只借助直尺確定該圓弧所在圓的圓心D,并連接AD、CD.(保留作圖痕跡,不寫作法)

(2)請(qǐng)?jiān)?1)的基礎(chǔ)上,完成下列填空與計(jì)算:

①寫出點(diǎn)的坐標(biāo):C 、D

②⊙D的半徑= ;(結(jié)果保留根號(hào))

③求扇形ADC的面積.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線yax2+bx+c過頂點(diǎn)A0,2),以原點(diǎn)O為圓心,OA為半徑的圓與拋物線的另兩個(gè)交點(diǎn)為B,C,且BC的左側(cè),△ABC有一個(gè)內(nèi)角為60°

1)求拋物線的解析式.

2)若MN與直線y=﹣2x平行,Mx1,y1),Nx2,y2),M,N都在拋物線上,且M,N位于直線BC的兩側(cè),y1y2,MEBCE,NFBCF,解決以下問題:

①求證:.

②求△MBC外心的縱坐標(biāo)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案