【題目】已知,如圖1,在中,,,,若的中點(diǎn),與點(diǎn).

1)求的長.

2)如圖2,點(diǎn)為射線上一動點(diǎn),連接,線段繞點(diǎn)順時針旋轉(zhuǎn)交直線與點(diǎn).

①若時,求的長:

②如圖3,連接交直線與點(diǎn),當(dāng)為等腰三角形時,求的長.

【答案】1;(2)①, ,.

【解析】

1)先利用相似三角形性質(zhì)求得,并利用相似比即可求的長;

2由題意分點(diǎn)在線段上,點(diǎn)在射線上,利用相似三角形性質(zhì)進(jìn)行分析求值;

利用三角函數(shù)以及等腰三角形性質(zhì)綜合進(jìn)行分析討論.

解:(1,

,

2)點(diǎn)在線段

的中點(diǎn)

的中點(diǎn)

,

的中位線

)點(diǎn)在射線

的中點(diǎn),

由(1)可得

,

,

綜上所述:的長為

由上問可得,

,

為等腰三角形,則為等腰三角形.

延長線上,不符合題意,舍去

,

則點(diǎn)與點(diǎn)重合

綜上所述:的長為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016年,某貧困戶的家庭年人均純收入為2500元,通過政府產(chǎn)業(yè)扶持,發(fā)展了養(yǎng)殖業(yè)后,到2018年,家庭年人均純收入達(dá)到了3600元.

1)求該貧困戶2016年到2018年家庭年人均純收入的年平均增長率;

2)若年平均增長率保持不變,2019年該貧困戶的家庭年人均純收入是否能達(dá)到4200元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,過點(diǎn)A的直線PC交⊙OA,C兩點(diǎn),AD平分∠PAB,射線AD交⊙O于點(diǎn)D,過點(diǎn)DDEPA于點(diǎn)E

1)求證:ED為⊙O的切線;

2)若AB10,ED2AE,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是中國傳統(tǒng)數(shù)學(xué)最重要的著作,在勾股章中有這樣一個問題:今有邑方二百步,各中開門,出東門十五步有木,問:出南門幾步面見木?用今天的話說,大意是:如圖,DEFG是一座邊長為200步(是古代的長度單位)的正方形小城,東門H位于GD的中點(diǎn),南門K位于ED的中點(diǎn),出東門15步的A處有一樹木,求出南門多少步恰好看到位于A處的樹木(即點(diǎn)D在直線AC上)?請你計(jì)算KC的長為多少步.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)是第一象限內(nèi)橫坐標(biāo)為2的一個定點(diǎn),軸于點(diǎn),交直線于點(diǎn),若點(diǎn)是線段上的一個動點(diǎn),,,點(diǎn)在線段上運(yùn)動時,點(diǎn)不變,點(diǎn)隨之運(yùn)動,當(dāng)點(diǎn)從點(diǎn)運(yùn)動到點(diǎn)時,則點(diǎn)運(yùn)動的路徑長是(

A.B.C.2D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線 y = x與反比例函數(shù)的圖象交于點(diǎn)A2m.

1)求mk的值;

2)點(diǎn)PxP,yP)是函數(shù)圖象上的任意一點(diǎn),過點(diǎn)P作平行于x軸的直線,交直線y=x于點(diǎn)B.

①當(dāng)yP = 4時,求線段BP的長;

②當(dāng)BP3時,結(jié)合函數(shù)圖象,直接寫出點(diǎn)P 的縱坐標(biāo)yP的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個結(jié)論:①abc>0;②b<a+c;③4a+2b+c>0;④2c–3b<0;⑤a+b>n(an+b)(n≠1),其中正確的結(jié)論有( )

A. 2個 B. 3個 C. 4個 D. 5個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在平面直角坐標(biāo)系xOy中,直線yx+x軸交于點(diǎn)A,與y軸交于點(diǎn)B,點(diǎn)F是點(diǎn)B關(guān)于x軸的對稱點(diǎn),拋物線yx2+bx+c經(jīng)過點(diǎn)A和點(diǎn)F,與直線AB交于點(diǎn)C

1)求bc的值;

2)點(diǎn)P是直線AC下方的拋物線上的一動點(diǎn),連結(jié)PA,PB.求△PAB的最大面積及點(diǎn)P到直線AC的最大距離;

3)點(diǎn)Q是拋物線上一點(diǎn),點(diǎn)D在坐標(biāo)軸上,在(2)的條件下,是否存在以A,PD,Q為頂點(diǎn)且AP為邊的平行四邊形,若存在,直接寫出點(diǎn)Q的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,拋物線yax2+bx+c的頂點(diǎn)為B(﹣1,3),與x軸的交點(diǎn)A在點(diǎn)(﹣3,0)和(﹣2,0)之間,以下結(jié)論:①b24ac0、a+b+c0 ③2ab0ca3,其中正確的有_____.(填序號)

查看答案和解析>>

同步練習(xí)冊答案