(2005•烏蘭察布)已知如圖:△ABC內(nèi)接于⊙O,P為BC邊延長(zhǎng)線上的一點(diǎn),PA為⊙O的切線,切點(diǎn)為A,若PA=6,PC=4,求的值.

【答案】分析:由于∠B、∠ABC都不在直角三角形中,因此需要通過(guò)作輔助線來(lái)達(dá)到這個(gè)目的.過(guò)A作⊙O的直徑AD,連接BD、CD,那么∠ADB=∠ACB、∠ADC=∠B,在Rt△ABD和Rt△ACD中,可得到sinB=AC:AD,sinACB=AB:AD;因此只需求得AB:AC的值即可,分析圖形,可通過(guò)證△PAB∽△PCA來(lái)求得這個(gè)比值.
解答:解:∵PA是⊙O的切線,
∴PA2=PC•PB,
∵PA=6,PC=4,
∴PB=9;
由弦切角定理知:∠PAC=∠ABC,
又∵∠APC=∠BPA,
∴△PAC∽△PBA,
;
過(guò)A作⊙O的直徑AD,連接BD、CD;
則有:∠ADB=∠ACB,∠ABC=∠ADC;
在Rt△ABD中,sinADB=sinACB=AB:AD,
同理得:sinADC=sinABC=AC:AD;
=
點(diǎn)評(píng):此題主要考查了圓周角定理、切線的性質(zhì)、弦切角和切割線定理以及相似三角形的判定和性質(zhì);能夠通過(guò)作輔助線將所求的角轉(zhuǎn)移到相應(yīng)的直角三角形中,是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2005•烏蘭察布)如圖,已知AC平分∠PAQ,點(diǎn)B,B′分別在邊AP,AQ上.下列條件中不能推出AB=AB′的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2005•烏蘭察布)已知拋物線y=x2-2x-3,將y=x2-2x-3用配方法化為y=a(x-h)2+k的形式,并指出對(duì)稱軸、頂點(diǎn)坐標(biāo)及圖象與x軸、y軸的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(02)(解析版) 題型:填空題

(2005•烏蘭察布)一個(gè)函數(shù)的圖象過(guò)點(diǎn)(1,2),則這個(gè)函數(shù)的解析式是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年內(nèi)蒙古烏蘭察布市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2005•烏蘭察布)已知拋物線y=x2-2x-3,將y=x2-2x-3用配方法化為y=a(x-h)2+k的形式,并指出對(duì)稱軸、頂點(diǎn)坐標(biāo)及圖象與x軸、y軸的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年內(nèi)蒙古烏蘭察布市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2005•烏蘭察布)一個(gè)函數(shù)的圖象過(guò)點(diǎn)(1,2),則這個(gè)函數(shù)的解析式是   

查看答案和解析>>

同步練習(xí)冊(cè)答案