【題目】如圖,拋物線(xiàn)y=ax2+bx+c的圖象經(jīng)過(guò)點(diǎn)A(﹣2,0),點(diǎn)B(4,0),點(diǎn)D(2,4),與y軸交于點(diǎn)C,作直線(xiàn)BC,連接AC,CD.
(1)求拋物線(xiàn)的函數(shù)表達(dá)式;
(2)E是拋物線(xiàn)上的點(diǎn),求滿(mǎn)足∠ECD=∠ACO的點(diǎn)E的坐標(biāo);
(3)點(diǎn)M在y軸上且位于點(diǎn)C上方,點(diǎn)N在直線(xiàn)BC上,點(diǎn)P為第一象限內(nèi)拋物線(xiàn)上一點(diǎn),若以點(diǎn)C,M,N,P為頂點(diǎn)的四邊形是菱形,求菱形的邊長(zhǎng).
【答案】(1)y=﹣x2+x+4;(2)點(diǎn)E的坐標(biāo)為(1,),(3,);(3)菱形的邊長(zhǎng)為4﹣4.
【解析】
試題分析:(1)把點(diǎn)A(﹣2,0),點(diǎn)B(4,0),點(diǎn)D(2,4)代入y=ax2+bx+c,用待定系數(shù)法求出拋物線(xiàn)解析式即可.(2)分點(diǎn)E在直線(xiàn)CD上方的拋物線(xiàn)上和點(diǎn)E在直線(xiàn)CD下方的拋物線(xiàn)上兩種情況,用三角函數(shù)求解即可;(3)分CM為菱形的邊和CM為菱形的對(duì)角線(xiàn)兩種情況,用菱形的性質(zhì)進(jìn)行計(jì)算即可.
試題解析:(1)∵拋物線(xiàn)y=ax2+bx+c的圖象經(jīng)過(guò)點(diǎn)A(﹣2,0),點(diǎn)B(4,0),點(diǎn)D(2,4),
∴設(shè)拋物線(xiàn)解析式為y=a(x+2)(x﹣4),
∴﹣8a=4,
∴a=﹣,
∴拋物線(xiàn)解析式為y=﹣(x+2)(x﹣4)=﹣x2+x+4;
(2)如圖1,
①點(diǎn)E在直線(xiàn)CD上方的拋物線(xiàn)上,記E′,
連接CE′,過(guò)E′作E′F′⊥CD,垂足為F′,
由(1)知,OC=4,
∵∠ACO=∠E′CF′,
∴tan∠ACO=tan∠E′CF′,
∴=,
設(shè)線(xiàn)段E′F′=h,則CF′=2h,
∴點(diǎn)E′(2h,h+4)
∵點(diǎn)E′在拋物線(xiàn)上,
∴﹣(2h)2+2h+4=h+4,
∴h=0(舍)h=
∴E′(1,),
②點(diǎn)E在直線(xiàn)CD下方的拋物線(xiàn)上,記E,
同①的方法得,E(3,),
點(diǎn)E的坐標(biāo)為(1,),(3,)
(3)①CM為菱形的邊,如圖2,
在第一象限內(nèi)取點(diǎn)P′,過(guò)點(diǎn)
P′作P′N′∥y軸,交BC于N′,過(guò)點(diǎn)P′作P′M′∥BC,
交y軸于M′,
∴四邊形CM′P′N′是平行四邊形,
∵四邊形CM′P′N′是菱形,
∴P′M′=P′N′,
過(guò)點(diǎn)P′作P′Q′⊥y軸,垂足為Q′,
∵OC=OB,∠BOC=90°,
∴∠OCB=45°,
∴∠P′M′C=45°,
設(shè)點(diǎn)P′(m,﹣m2+m+4),
在Rt△P′M′Q′中,P′Q′=m,P′M′=m,
∵B(4,0),C(0,4),
∴直線(xiàn)BC的解析式為y=﹣x+4,
∵P′N′∥y軸,
∴N′(m,﹣m+4),
∴P′N′=﹣m2+m+4﹣(﹣m+4)=﹣m2+2m,
∴m=﹣m2+2m,
∴m=0(舍)或m=4﹣2,
菱形CM′P′N′的邊長(zhǎng)為(4﹣2)=4﹣4.
②CM為菱形的對(duì)角線(xiàn),如圖3,
在第一象限內(nèi)拋物線(xiàn)上取點(diǎn)P,過(guò)點(diǎn)P作PM∥BC,
交y軸于點(diǎn)M,連接CP,過(guò)點(diǎn)M作MN∥CP,交BC于N,
∴四邊形CPMN是平行四邊形,連接PN交CM于點(diǎn)Q,
∵四邊形CPMN是菱形,
∴PQ⊥CM,∠PCQ=∠NCQ,
∵∠OCB=45°,
∴∠NCQ=45°,
∴∠PCQ=45°,
∴∠CPQ=∠PCQ=45°,
∴PQ=CQ,
設(shè)點(diǎn)P(n,﹣n2+n+4),
∴CQ=n,OQ=n+2,
∴n+4=﹣n2+n+4,
∴n=0(舍),
∴此種情況不存在.
∴菱形的邊長(zhǎng)為4﹣4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某學(xué)校田徑體育場(chǎng)一部分的示意圖,第一條跑道每圈為米,跑道分直道和彎道,直道為長(zhǎng)相等的平行線(xiàn)段,彎道為同心的半圓型,彎道與直道相連接,已知直道的長(zhǎng)米,跑道的寬為米.,結(jié)果精確到
求第一條跑道的彎道部分的半徑.
求一圈中第二條跑道比第一條跑道長(zhǎng)多少米?
若進(jìn)行米比賽,求第六道的起點(diǎn)與圓心的連線(xiàn)與的夾角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,點(diǎn)D是邊AB上的動(dòng)點(diǎn),將△ACD沿CD所在的直線(xiàn)折疊至△CDA的位置,CA'交AB于點(diǎn)E.若△A'ED為直角三角形,則AD的長(zhǎng)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1個(gè)單位長(zhǎng)度,已知△ABC的頂點(diǎn)A、C的坐標(biāo)分別為(﹣4,4)、(﹣1,2),點(diǎn)B坐標(biāo)為(﹣2,1).
(1)請(qǐng)?jiān)趫D中正確地作出平面直角坐標(biāo)系,畫(huà)出點(diǎn)B,并連接AB、BC;
(2)將△ABC沿x軸正方向平移5個(gè)單位長(zhǎng)度后,再沿x軸翻折得到△DEF,畫(huà)出△DEF;
(3)點(diǎn)P(m,n)是△ABC的邊上的一點(diǎn),經(jīng)過(guò)(2)中的變化后得到對(duì)應(yīng)點(diǎn)Q,直接寫(xiě)出點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=﹣x2+bx+c與x軸交于點(diǎn)A,B,與y軸交于點(diǎn)C,直線(xiàn)y=﹣x+2經(jīng)過(guò)點(diǎn)A,C
(1)求拋物線(xiàn)的解析式;
(2)點(diǎn)P為直線(xiàn)AC上方拋物線(xiàn)上一動(dòng)點(diǎn).
①連接PO,交AC于點(diǎn)E,求的最大值;
②過(guò)點(diǎn)P作PF⊥AC,垂足為點(diǎn)F連接PC,是否存在點(diǎn)P,使△PFC中的一個(gè)角等于∠CAB的2倍?若存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在每個(gè)小正方形的邊長(zhǎng)均為1的方格紙中,線(xiàn)段AB的端點(diǎn)A、B均在小正方形的頂點(diǎn)上.
(1)在方格紙中畫(huà)出以AB為一條直角邊的等腰直角△ABC,頂點(diǎn)C在小正方形的頂點(diǎn)上;
(2)在方格紙中畫(huà)出△ABC的中線(xiàn)BD,將線(xiàn)段DC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到線(xiàn)段CD′,畫(huà)出旋轉(zhuǎn)后的線(xiàn)段CD′,連接BD′,直接寫(xiě)出四邊形BDCD′的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】自實(shí)施新教育改革后,學(xué)生的自主學(xué)習(xí)、合作交流能力有很大提高,張老師為了了解所教班級(jí)學(xué)生自主學(xué)習(xí)、合作交流的具體情況,對(duì)本班部分同學(xué)進(jìn)行了為期半個(gè)月的跟蹤調(diào)查,并將調(diào)查結(jié)果分為四類(lèi):A.特別好;B.好;C.一般;D.較差,并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問(wèn)題:
(1)本次調(diào)查中,張老師一共調(diào)查了多少名同學(xué)?
(2)求出調(diào)查中C類(lèi)女生及D類(lèi)男生的人數(shù),將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)為了共同進(jìn)步,張老師想從被調(diào)查的A類(lèi)和D類(lèi)學(xué)生中分別選取一位同學(xué)進(jìn)行“一幫一”互助學(xué)習(xí),請(qǐng)用列表法或畫(huà)樹(shù)形圖的方法求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將直角邊長(zhǎng)為的等腰直角放在平面直角坐標(biāo)系中,點(diǎn)為坐標(biāo)原點(diǎn),點(diǎn)、分別在軸,軸的正半軸上,一條拋物線(xiàn)經(jīng)過(guò)點(diǎn)、及點(diǎn).
求該拋物線(xiàn)的解析式;
若點(diǎn)是線(xiàn)段上一動(dòng)點(diǎn),過(guò)點(diǎn)作的平行線(xiàn)交于點(diǎn),連接,當(dāng)的面積最大時(shí),求點(diǎn)的坐標(biāo);
若點(diǎn)在拋物線(xiàn)上,則稱(chēng)點(diǎn)為拋物線(xiàn)的不動(dòng)點(diǎn),將中的拋物線(xiàn)進(jìn)行平移,平移后,該拋物線(xiàn)只有一個(gè)不動(dòng)點(diǎn),且頂點(diǎn)在直線(xiàn)上,求此時(shí)拋物線(xiàn)的解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com