【題目】如圖,在直角梯形紙片中,,將紙片沿過(guò)點(diǎn)的直線折疊,使點(diǎn)落在邊上的點(diǎn)處,折痕為.連接并展開(kāi)紙片.

判斷四邊形的形狀,并說(shuō)明理由.

取線段的中點(diǎn),連接、,如果,試說(shuō)明四邊形是等腰梯形.

【答案】(1)四邊形ADEF為正方形,理由詳見(jiàn)解析;(2)詳見(jiàn)解析.

【解析】

(1)根據(jù)折疊的性質(zhì)得到∠DEF=∠A=90°,DA=DE,由AB∥DC∠ADE=90°,則可判斷四邊形ADEF為矩形,加上鄰邊相等,由此可判斷四邊形ADEF為正方形;
(2)由DG∥CB,DC∥AB可判斷四邊形BGDC是平行四邊形,則BC=DG,DC=BG,所以EC≠BG,于是可判斷四邊形EGBC是梯形,再利用G點(diǎn)為AF的中點(diǎn)和正方形ADEF為軸對(duì)稱圖形得到GE=DG,則EG=CB,所以可判斷四邊形GBCE是等腰梯形.

四邊形為正方形.理由如下:

∵紙片沿過(guò)點(diǎn)的直線折疊,使點(diǎn)落在邊上的點(diǎn)處,折痕為,

,

,

∴四邊形為矩形,

,

∴四邊形為正方形;

,,

∴四邊形是平行四邊形,

,,

∴四邊形是梯形,

又∵點(diǎn)為的中點(diǎn),

,

而正方形為軸對(duì)稱圖形,

,

∴四邊形為等腰梯形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)命題:(1)三角形的一條中線把三角形分成面積相等的兩部分;(2)有兩邊及其中一邊的對(duì)角對(duì)應(yīng)相等的兩三角形全等;(3)點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)坐標(biāo)為;(4)若,則;其中真命題的有

A. 1)、(2B. 1)、(3C. 2)、(3D. 3)、(4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 n 個(gè)邊長(zhǎng)都為 1cm 的正方形按如圖所示的方法擺放,點(diǎn) A1A2,,An 分別是正方形對(duì)角線的交點(diǎn),則 6 個(gè)正方形重疊形成的重疊部分的面積和為( cm2

A.B.1C.D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)過(guò)頂點(diǎn)的一條直線,分別是直線上兩點(diǎn),且

1)若直線經(jīng)過(guò)的內(nèi)部,且在射線上,請(qǐng)解決下面兩個(gè)問(wèn)題:

如圖1,若,,

; (填,);

如圖2,若,請(qǐng)?zhí)砑右粋(gè)關(guān)于關(guān)系的條件 ,使中的兩個(gè)結(jié)論仍然成立,并證明兩個(gè)結(jié)論成立.

2)如圖3,若直線經(jīng)過(guò)的外部,,請(qǐng)?zhí)岢?/span>三條線段數(shù)量關(guān)系的合理猜想(不要求證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,的垂直平分線于點(diǎn),交于點(diǎn),且,添加一個(gè)條件,能證明四邊形為正方形的是________

; ;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著人們環(huán)保意識(shí)的不斷增強(qiáng),我市家庭電動(dòng)自行車的擁有量逐年增加.據(jù)統(tǒng)計(jì),某小區(qū)2009年底擁有家庭電動(dòng)自行車125輛,2011年底家庭電動(dòng)自行車的擁有量達(dá)到180輛.

(1)若該小區(qū)2009年底到2012年底家庭電動(dòng)自行車擁有量的年平均增長(zhǎng)率相同,則該小區(qū)到2012年底電動(dòng)自行車將達(dá)到多少輛?

(2)為了緩解停車矛盾,該小區(qū)決定投資3萬(wàn)元再建若干個(gè)停車位,據(jù)測(cè)算,建造費(fèi)用分別為室內(nèi)車位1000元/個(gè),露天車位200元/個(gè).考慮到實(shí)際因素,計(jì)劃露天車位的數(shù)量不少于室內(nèi)車位的2倍,但不超過(guò)室內(nèi)車位的2.5倍,則該小區(qū)最多可建兩種車位各多少個(gè)?試寫(xiě)出所有可能的方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有正面分別標(biāo)有數(shù)字-3,-2,-1,0,1,2,3的七張不透明卡片,它們除數(shù)字不同外其余全部相同,現(xiàn)將它們背面朝上,洗勻后從中任取一張,將卡片上的數(shù)字記為,則使關(guān)于的方程+xm=0有實(shí)數(shù)解且關(guān)于的不等式組有整數(shù)解的的概率為_______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,的高,直線交于點(diǎn),則的度數(shù)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年眉山市委市政府積極推進(jìn)創(chuàng)建全國(guó)文明城市工作,市創(chuàng)文辦公室為了調(diào)查中學(xué)生對(duì)社會(huì)主義核心價(jià)值觀內(nèi)容的了解程度(程度分為:.非常了解,.比較了解.了解較少,.不知道),對(duì)我市某中學(xué)的學(xué)生進(jìn)行隨機(jī)抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制了兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息解答下列問(wèn)題:

1)本次抽樣調(diào)查了多少名學(xué)生;

2)補(bǔ)全條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;

3)求扇形統(tǒng)計(jì)圖中.了解較少所在的扇形圓心角的度數(shù);

4)若該中學(xué)共有2600名學(xué)生,請(qǐng)你計(jì)算這所中學(xué)的所有學(xué)生中,對(duì)社會(huì)主義核心價(jià)值觀內(nèi)容的了解程度為非常了解比較了解的學(xué)生共有多少名?

查看答案和解析>>

同步練習(xí)冊(cè)答案