【題目】如圖,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且點(diǎn)B,A,D在同一條直線上,M,N分別為BE,CD的中點(diǎn).

(1)求證:△ABE≌ACD;

(2)判斷△AMN的形狀,并說(shuō)明理由.

【答案】(1)證明見(jiàn)解析(2)△AMN為等腰三角形;理由見(jiàn)解析

【解析】

(1)由∠BAC=DAE,等式左右兩邊都加上∠CAE,得到一對(duì)角相等,再由AB=AC,AD=AE,利用SAS可得出三角形ABE與三角形ACD全等;
(2)由MN分別為BE,CD的中點(diǎn),且BE=CD,可得出ME=ND,由△ABE與△ACD全等,對(duì)應(yīng)角∠AEB=ADC,利用SAS可得出△AME與△AND全等,利用全等三角形的對(duì)應(yīng)邊相等可得出AM=AN,即△AMN為等腰三角形.

(1)∵∠BAC=DAE,

∴∠BAC+CAE=DAE+CAE,即∠BAE=CAD,

ABEACD中,

,

∴△ABE≌△ACD(SAS);

(2)ABE≌△ACD

BE=CD,AEM=ADC,

M、N分別為BE、CD的中點(diǎn),

ME=ND,

AEMADN中,,

∴△AEM≌△ADN(SAS),

AM=AN,

AMN為等腰三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,⊙C的半徑為r(r>1),P是圓內(nèi)與圓心C不重合的點(diǎn),⊙C的“完美點(diǎn)”的定義如下:若直線CP與⊙C交于點(diǎn)A,B,滿足|PA﹣PB|=2,則稱點(diǎn)P為⊙C的“完美點(diǎn)”,如圖為⊙C及其“完美點(diǎn)”P(pán)的示意圖.

(1)當(dāng)⊙O的半徑為2時(shí),
①點(diǎn)M( ,0)⊙O的“完美點(diǎn)”,點(diǎn)N(0,1)⊙O的“完美點(diǎn)”,點(diǎn)T(﹣ ,﹣ ⊙O的“完美點(diǎn)”(填“是”或者“不是”);
②若⊙O的“完美點(diǎn)”P(pán)在直線y= x上,求PO的長(zhǎng)及點(diǎn)P的坐標(biāo);
(2)⊙C的圓心在直線y= x+1上,半徑為2,若y軸上存在⊙C的“完美點(diǎn)”,求圓心C的縱坐標(biāo)t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A、B、C、D是坐標(biāo)軸上的點(diǎn)且點(diǎn)C坐標(biāo)是(0,﹣1),AB=5,點(diǎn)(a,b)在如圖所示的陰影部分內(nèi)部(不包括邊界),已知OA=OD=4,則a的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明家飲水機(jī)中原有水的溫度為20℃,通電開(kāi)機(jī)后,飲水機(jī)自動(dòng)開(kāi)始加熱[此過(guò)程中水溫y(℃)與開(kāi)機(jī)時(shí)間x(分)滿足一次函數(shù)關(guān)系],當(dāng)加熱到100℃時(shí)自動(dòng)停止加熱,隨后水溫開(kāi)始下降[此過(guò)程中水溫y(℃)與開(kāi)機(jī)時(shí)間x(分)成反比例關(guān)系],當(dāng)水溫降至20℃時(shí),飲水機(jī)又自動(dòng)開(kāi)始加熱…,重復(fù)上述程序(如圖所示),根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)當(dāng)0≤x≤8時(shí),求水溫y(℃)與開(kāi)機(jī)時(shí)間x(分)的函數(shù)關(guān)系式;
(2)求圖中t的值;
(3)若小明在通電開(kāi)機(jī)后即外出散步,請(qǐng)你預(yù)測(cè)小明散步45分鐘回到家時(shí),飲水機(jī)內(nèi)的溫度約為多少℃?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】決心試一試,請(qǐng)閱讀下列材料:計(jì)算:

解法一:原式=

=

=

解法二:原式=

=

=

=

解法三:原式的倒數(shù)為:

=

=﹣20+3﹣5+12

=﹣10

故原式 =

上述得出的結(jié)果不同,肯定有錯(cuò)誤的解法,你認(rèn)為解法 是錯(cuò)誤的,在正確的解法中,你認(rèn)為解法 最簡(jiǎn)捷.然后請(qǐng)解答下列問(wèn)題,計(jì)算:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC=10cm,BD⊥AC于點(diǎn)D,BD=8cm.點(diǎn)M從點(diǎn)A出發(fā),沿AC的方向勻速運(yùn)動(dòng),同時(shí)直線PQ由點(diǎn)B出發(fā),沿BA的方向勻速運(yùn)動(dòng),運(yùn)動(dòng)過(guò)程中始終保持PQ∥AC,直線PQ交AB于點(diǎn)P、交BC于點(diǎn)Q、交BD于點(diǎn)F.連接PM,設(shè)運(yùn)動(dòng)時(shí)間為t秒(0<t≤5).線段CM的長(zhǎng)度記作y , 線段BP的長(zhǎng)度記作y , y和y關(guān)于時(shí)間t的函數(shù)變化情況如圖所示.

(1)由圖2可知,點(diǎn)M的運(yùn)動(dòng)速度是每秒cm,當(dāng)t為何值時(shí),四邊形PQCM是平行四邊形?在圖2中反映這一情況的點(diǎn)是;
(2)設(shè)四邊形PQCM的面積為ycm2 , 求y與t之間的函數(shù)關(guān)系式;
(3)是否存在某一時(shí)刻t,使S四邊形PQCM= S△ABC?若存在,求出t的值;若不存在,說(shuō)明理由;
(4)連接PC,是否存在某一時(shí)刻t,使點(diǎn)M在線段PC的垂直平分線上?若存在,求出此時(shí)t的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD中,AB=13,AD=10,將ABCD沿AE翻折后,點(diǎn)B恰好與點(diǎn)C重合,則點(diǎn)C到AD的距離為(
A.5
B.12
C.3
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,∠B=90°,AB=BC=3,CD=8,AD=10.

(1)求∠BCD的度數(shù);

(2)求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,D,E分別是AC,AB上的點(diǎn),BD與CE交于點(diǎn)O.給出下列三個(gè)條件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.上述三個(gè)條件中,哪兩個(gè)條件可判定△ABC是等腰三角形(用序號(hào)寫(xiě)出一種情形):_______

查看答案和解析>>

同步練習(xí)冊(cè)答案