【題目】下列說法正確的是( )

A.為了解全國(guó)中學(xué)生視力的情況,應(yīng)采用普查的方式

B.某種彩票中獎(jiǎng)的概率是,買1000張這種彩票一定會(huì)中獎(jiǎng)

C.2000名學(xué)生中隨機(jī)抽取200名學(xué)生進(jìn)行調(diào)查,樣本容量為200名學(xué)生

D.從只裝有白球和綠球的袋中任意摸出一個(gè)球,摸出黑球是確定事件

【答案】D

【解析】

根據(jù)調(diào)查的方式,概率意義以及樣本容量和隨機(jī)事件的意義和類型進(jìn)行判斷即可解決.

解:

為了解全國(guó)中學(xué)生視力的情況,應(yīng)采用抽樣調(diào)查的方式,故A錯(cuò)誤;

某種彩票中獎(jiǎng)的概率是,只是說明了買該彩票中獎(jiǎng)的可能性的大小,并非買1000張這種彩票一定會(huì)中獎(jiǎng),故B錯(cuò)誤;

2000名學(xué)生中隨機(jī)抽取200名學(xué)生進(jìn)行調(diào)查,樣本容量為200,故C錯(cuò)誤;

從只裝有白球和綠球的袋中任意摸出一個(gè)球,摸出黑球是確定事件,此項(xiàng)正確.

故答案為D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某鄉(xiāng)鎮(zhèn)實(shí)施產(chǎn)業(yè)精準(zhǔn)扶貧,幫助貧困戶承包了若干畝土地種植新品草莓,已知該草莓的成本為每千克10元,草莓成熟后投入市場(chǎng)銷售,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),草莓銷售不會(huì)虧本,且每天的銷售量y(千克)與銷售單價(jià)x(元/千克)之間函數(shù)關(guān)系如圖所示.

1)求yx的函數(shù)關(guān)系式,并寫出x的取值范圍.

2)當(dāng)該品種草莓的定價(jià)為多少時(shí),每天銷售獲得利潤(rùn)最大?最大利潤(rùn)是多少?

3)某村今年草莓采摘期限30天,預(yù)計(jì)產(chǎn)量6000千克,則按照(2)中的方式進(jìn)行銷售,能否銷售完這批草莓?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖12分別是某款籃球架的實(shí)物圖與示意圖,ABBC于點(diǎn)B,底座BC1.3米,底座BC與支架AC所成的角∠ACB60°,點(diǎn)H在支架AF上,籃板底部支架EHBCEFEH于點(diǎn)E,已知AH米,HF米,HE1米.

1)求籃板底部支架HE與支架AF所成的∠FHE的度數(shù).

2)求籃板底部點(diǎn)E到地面的距離,(精確到0.01米)(參考數(shù)據(jù):≈1.41,≈1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,延長(zhǎng)AD至點(diǎn)E,使DEAD,連接BD

1)求證:四邊形BCED是平行四邊形;

2)若DADB2cosA,求點(diǎn)B到點(diǎn)E的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在RtABC中,∠ACB90°,BC12,cosBD、E分別是ABBC邊上的中點(diǎn),AECD相交于點(diǎn)G

1)求CG的長(zhǎng);

2)求tanBAE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑, OE垂直于弦BC,垂足為F,OE交⊙O于點(diǎn)D,且∠CBE=2C

1)求證:BE與⊙O相切;

2)若DF=9,tanC=,求直徑AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC為和點(diǎn)A'.

(1)以點(diǎn)A'為頂點(diǎn)求作A'B'C',使A'B'C'ABC,SA'B'C'=4SABC;

(尺規(guī)作圖,保留作圖痕跡,不寫作法)

(2)設(shè)D、E、F分別是ABC三邊AB、BC、AC的中點(diǎn),D'、E'F'分別是你所作的A'B'C'三邊A'B'、B'C'A'C'的中點(diǎn),求證:DEFD'E'F'.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,小正方形方格的邊長(zhǎng)為 1,

按要求作圖,并根據(jù)要求解答問題:

1)作圖:連接圖中小正方形方格的某兩個(gè)頂點(diǎn),分別得到三條線段、、,使得、;

2)判斷(1)中的三條線段、能否構(gòu)成三角形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線yax2bxc經(jīng)過A(-1,0)、B(3,0)、C(0,3)三點(diǎn),直線l是拋物線的對(duì)稱軸.

(1)求拋物線的函數(shù)關(guān)系式;

(2)設(shè)點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn),當(dāng)PAC的周長(zhǎng)最小時(shí),求點(diǎn)P的坐標(biāo);

查看答案和解析>>

同步練習(xí)冊(cè)答案