【題目】已知線段AB,點(diǎn)C在直線AB上,D為線段BC的中點(diǎn).
(1)若AB=8 ,AC=2,求線段CD的長.
(2)若點(diǎn)E是線段AC的中點(diǎn),直接寫出線段DE和AB的數(shù)量關(guān)系是________________.
【答案】(1)3或5;(2)AB=2DE
【解析】
(1)分兩種情況討論,當(dāng)C在點(diǎn)A右側(cè)時(shí),畫出圖形可得BC=AB-AC=6,再根據(jù)D是線段BC的中點(diǎn),可得;當(dāng)C在點(diǎn)A左側(cè)時(shí),畫出圖形可得BC=AB+AC=10,同理可得;
(2)根據(jù)E為線段AC的中點(diǎn),則,再根據(jù)(1)中兩種情況分析得出線段DE的長度即可得出答案.
解:(1)如圖1,當(dāng)C在點(diǎn)A右側(cè)時(shí),
∵AB=8,AC=2.
∴BC=AB-AC=6
∵D是線段BC的中點(diǎn)
∴
如圖2,當(dāng)C在點(diǎn)A左側(cè)時(shí),
∵AB=8,AC=2.
∴BC=AB+AC=10
∵D是線段BC的中點(diǎn)
∴
綜上所述CD=3或5
(2)由圖1可得當(dāng)E為線段AC的中點(diǎn),則,
∵AB=8
∴AB=2DE
由圖2可得當(dāng)E為線段AC的中點(diǎn),則,
∵AB=8
∴AB=2DE
綜上可得:AB=2DE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,A(0,1),B(5,0)將線段AB向上平移到DC,如圖1,CD交y軸于點(diǎn)E,D點(diǎn)坐標(biāo)為(﹣2,a)
(1)直接寫出點(diǎn)C坐標(biāo)(C的縱坐標(biāo)用a表示);
(2)若四邊形ABCD的面積為18,求a的值;
(3)如圖2,F為AE延長線上一點(diǎn),H為OB延長線上一點(diǎn),EP平分∠CEF,BP平分∠ABH,求∠EPB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點(diǎn)C,且AD⊥MN于點(diǎn)D,BE⊥MN于點(diǎn)E.求證:
(1)△ADC≌△CEB;
(2)DE=AD+BE.
(3)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖(2)的位置時(shí),DE、AD、BE又怎樣的關(guān)系?并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)開展“我的中國夢(mèng)”演講比賽活動(dòng),九(1)、九(2)班根據(jù)初賽成績各選出5名選手參加復(fù)賽,兩個(gè)班各選出的5名選手的復(fù)賽成績(滿分為100分)如下圖所示.
(1)根據(jù)如圖,分別求出兩班復(fù)賽的平均成績和方差;
(2)根據(jù)(1)的計(jì)算結(jié)果,分析哪個(gè)班級(jí)5名選手的復(fù)賽成績波動(dòng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線()的部分圖象如圖所示,與軸的一個(gè)交點(diǎn)坐標(biāo)為,拋物線的對(duì)稱軸是,下列結(jié)論是:①;②;③方程有兩個(gè)不相等的實(shí)數(shù)根;④;⑤若點(diǎn)在該拋物線上,則,其中正確的個(gè)數(shù)有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O與BC交于點(diǎn)D,過點(diǎn)D作⊙O的切線與AC交于點(diǎn)F.
(1)求證:EF=CF;
(2)若AE=8,cosA=,求DF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)O為直線AB上一點(diǎn),在直線AB上側(cè)任作一個(gè)∠COD,使∠COD=90°.
(1)如圖1,過點(diǎn)O作射線OE,使OE是∠AOD的角平分線,求證:∠BOD=2∠COE;
(2)如圖2,過點(diǎn)O作射線OE,使OC是∠AOE的角平分線,另作射線OF,使OF是∠COD的平分線,若∠EOC=3∠EOF,求∠AOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直線y=x+b與雙曲線y=(x<0)交于點(diǎn)A(﹣1,﹣5),并分別與x軸、y軸交于點(diǎn)C、B.
(1)求出b、m的值;
(2)點(diǎn)D在x軸的正半軸上,若以點(diǎn)D、C、B組成的三角形與△OAB相似,試求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】自2016年國慶后,許多高校均投放了使用手機(jī)就可隨時(shí)用的共享單車。某運(yùn)營商為提高其經(jīng)營的A品牌共享單車的市場占有率,準(zhǔn)備對(duì)收費(fèi)作如下調(diào)整:一天中,同一個(gè)人第一次使用的車費(fèi)按0.5元收取,每增加一次,當(dāng)次車費(fèi)就比上次車費(fèi)減少0.1元,第6次開始,當(dāng)次用車免費(fèi)。具體收費(fèi)標(biāo)準(zhǔn)如下:
同時(shí),就此收費(fèi)方案隨機(jī)調(diào)查了某高校100名師生在一天中使用A品牌共享單車的意愿,得到如下數(shù)據(jù):
(1)寫出a、b的值。
(2)已知該校有5100名師生,且A品牌共享單車投放該校一天的費(fèi)用為5800元。試估計(jì):收費(fèi)調(diào)整后,此運(yùn)營商在該校投放A品牌共享單車能否獲利?說明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com