【題目】國際上通常用恩格爾系數(shù)(記作n)來衡量一個國家和地區(qū)人民的生活水平的狀況,它的計算公式:n=x/y(x:家庭食品支出總額;y:家庭消費支出總額).各種家庭類型的n如下表:
已知王先生居住地2008年比2003年食品價格上升了25%,該家庭在2008年購買食品和2003年完全相同的情況下多支出2000元,并且y=2x+3600(單位:元),則該家庭2003年屬于( )
家庭類型 | 貧困 | 溫飽 | 小康 | 富裕 |
n | n>60% | 50%<n≤60% | 40%<n≤50% | 30%<n≤40% |
A. 貧困 B. 溫飽 C. 小康 D. 富裕
【答案】C
【解析】
設(shè)王先生2003年的收入y1=2x+3600,2008年的收入y2=2(x+2000)+3600=2x+7600,設(shè)2003年食品價格為a元,則2008年食品價格為(1+25%)a元,根據(jù)統(tǒng)計表計算即可解題.
解:由題可知:王先生2003年的收入y1=2x+3600,2008年的收入y2=2(x+2000)+3600=2x+7600,設(shè)2003年食品價格為a元,則2008年食品價格為(1+25%)a元,
∴=,解得x=8000,則y1=19600,y2=23600,
∴2003年的恩格爾系數(shù)為:n===41%,
∴屬于小康水平,
故選C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】給出定義,若一個四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,則稱該四邊形為勾股四邊形.
(1)在你學(xué)過的特殊四邊形中,寫出兩種勾股四邊形的名稱;
(2)如圖,將△ABC繞頂點B按順時針方向旋轉(zhuǎn)60°得到△DBE,連接AD,DC,CE,已知∠DCB=30°.
①求證:△BCE是等邊三角形;
②求證:DC2+BC2=AC2,即四邊形ABCD是勾股四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,將△ABC沿直線MN翻折后,頂點C恰好落在邊AB上的點D處,已知MN∥AB,MC=6,NC=2,則四邊形MABN的面積是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD是⊙O的內(nèi)接四邊形,AC是⊙O的直徑,DE⊥AB,垂足為E.
(1)延長DE交⊙O于點F,延長DC,F(xiàn)B交于點P,如圖1.求證:PC=PB;
(2)過點B作BG⊥AD,垂足為G,BG交DE于點H,且點O和點A都在DE的左側(cè),如圖2.若AB= ,DH=1,∠OHD=80°,求∠BDE的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為3,延長CB至點M,使S△ABM=,過點B作BN⊥AM,垂足為N,O是對角線AC,BD的交點,連接ON,則ON的長為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了深化改革,某校積極開展校本課程建設(shè),計劃成立“文學(xué)鑒賞”、“科學(xué)實驗”、“音樂舞蹈”和“手工編織”等多個社團(tuán),要求每位學(xué)生都自主選擇其中一個社團(tuán).為此,隨機(jī)調(diào)查了本校各年級部分學(xué)生選擇社團(tuán)的意向,并將調(diào)查結(jié)果繪制成如下統(tǒng)計圖表(不完整):
某校被調(diào)查學(xué)生選擇社團(tuán)意向統(tǒng)計表
選擇意向 | 所占百分比 |
文學(xué)鑒賞 | a |
科學(xué)實驗 | 35% |
音樂舞蹈 | b |
手工編織 | 10% |
其他 | c |
根據(jù)統(tǒng)計圖表中的信息,解答下列問題:
(1)求本次調(diào)查的學(xué)生總?cè)藬?shù)及a,b,c的值;
(2)將條形統(tǒng)計圖補充完整;
(3)若該校共有1200名學(xué)生,試估計全校選擇“科學(xué)實驗”社團(tuán)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列格式, - , , , …
(1)化簡以上各式,并計算出結(jié)果;
(2)以上格式的結(jié)果存在一定的規(guī)律,請按規(guī)律寫出第5個式子及結(jié)果.
(3)用含n(n≥1的整數(shù))的式子寫出第n個式子及結(jié)果,并給出證明的過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD是矩形ABCD的一條對角線.
(1)作BD的垂直平分線EF,分別交AD,BC于點E,F,垂足為點O;(要求用尺規(guī)作圖,保留作圖痕跡,不要求寫作法)
(2)在(1)中,連接BE和DF,求證:四邊形DEBF是菱形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,邊長為6,D是BC邊上的動點,∠EDF=60°.
(1)求證:△BDE∽△CFD;
(2)當(dāng)BD=1,CF=3時,求BE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com