如圖,AB是⊙O的直徑,弦BC=2cm,∠ABC=60°.
(1)求⊙O的直徑;
(2)若D是AB延長線上一點(diǎn),連接CD,當(dāng)BD長為多少時(shí),CD與⊙O相切?

【答案】分析:(1)由AB為圓O的直徑,根據(jù)直徑所對的圓周角為直角得到∠C=90°,又∠ABC=60°得到∠A=30°,根據(jù)30°角所對的直角邊等于斜邊的一半,由BC求出AB的長,即為圓O的直徑;
(2)DB=OB時(shí),CD與圓O相切,理由為:由OC=OB得到△OCB為等腰三角形,又∠ABC為60°,故△OCB為等邊三角形,進(jìn)而得到CB=OB=OC,而OB=BD,故CB=OB=BD,根據(jù)一邊上的中線等于這邊的一半,得到這邊所對的角為直角,即∠OCD為直角,故DC與圓O相切.
解答:解:(1)∵AB是⊙O的直徑,
∴∠C=90°,
又弦BC=4cm,∠ABC=60°,
∴∠A=30°,
則⊙O的直徑AB=2BC=4cm;

(2)
當(dāng)BD=BC=2cm時(shí),CD與圓O的相切,
證明:∵∠ABC=60°,OC=OB,
∴△OCB為等邊三角形,
∴CB=OB=BD,
∴∠OCD=90°,
∴CD是圓O的切線.
點(diǎn)評:此題綜合考查了切線的性質(zhì),圓周角定理,其中證明切線的方法有:1、有點(diǎn)連接此點(diǎn)與半徑,證明夾角為直角;2、無點(diǎn)作垂線,證明垂線段等于半徑.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

8、如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當(dāng)陽光與水平線成60°角時(shí),電線桿的影子BC的長度為4米,則電線桿AB的高度為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

小亮家窗戶上的遮雨罩是一種玻璃鋼制品,它的頂部是圓柱側(cè)面的一部分(如圖1),它的側(cè)面邊緣上有兩條圓。ㄈ鐖D2),其中頂部圓弧AB的圓心O1在豎直邊緣AD上,另一條圓弧BC的圓心O2在水平邊緣DC的延長線上,其圓心角為90°,請你根據(jù)所標(biāo)示的尺寸(單位:cm)解決下面的問題.(玻璃鋼材料的厚度忽略不計(jì),π取3.1416)
(1)計(jì)算出弧AB所對的圓心角的度數(shù)(精確到0.01度)及弧AB的長度;(精確到0.1cm)
(2)計(jì)算出遮雨罩一個(gè)側(cè)面的面積;(精確到1cm2
(3)制做這個(gè)遮雨罩大約需要多少平方米的玻璃鋼材料.(精確到精英家教網(wǎng)0.1平方米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示是永州八景之一的愚溪橋,橋身橫跨愚溪,面臨瀟水,橋下冬暖夏涼,常有漁船停泊橋下避曬納涼.已知主橋拱為拋物線型,在正常水位下測得主拱寬24m,最高點(diǎn)離水面8m,以水平線AB為x軸,AB的中點(diǎn)為原點(diǎn)建立坐標(biāo)系.
①求此橋拱線所在拋物線的解析式.
②橋邊有一浮在水面部分高4m,最寬處16m的河魚餐船,如果從安全方面考慮,要求通過愚溪橋的船只,其船身在鉛直方向上距橋內(nèi)壁的距離不少于0.5m.探索此船能否通過愚溪橋?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:初中數(shù)學(xué)解題思路與方法 題型:047

已知如圖,AB是半圓直經(jīng),△ACD內(nèi)接于半⊙O,CE⊥AB于E,延長AD交EC的延長線于F,求證:AC·CD=AD·FC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當(dāng)陽光與水平線成60°角時(shí),電線桿的影子BC的長度為4米,則電線桿AB的高度為


  1. A.
    4米
  2. B.
    6米
  3. C.
    8米
  4. D.
    10米

查看答案和解析>>

同步練習(xí)冊答案