【題目】(1)①觀察一列數(shù)1,2,3,4,5,…,發(fā)現(xiàn)從第二項(xiàng)開(kāi)始,每一項(xiàng)與前一項(xiàng)之差是一個(gè)常數(shù),這個(gè)常數(shù)是 ;根據(jù)此規(guī)律,如果(為正整數(shù))表示這個(gè)數(shù)列的第項(xiàng),那么 , ;
②如果欲求的值,可令
……………①
將①式右邊順序倒置,得 ……………②
由②加上①式,得2 ;
∴ S=_________________;
由結(jié)論求;
(2)①觀察一列數(shù)2,4,8,16,32,…,發(fā)現(xiàn)從第二項(xiàng)開(kāi)始,每一項(xiàng)與前一項(xiàng)之比是一個(gè)常數(shù),這個(gè)常數(shù)是 ;根據(jù)此規(guī)律,如果(為正整數(shù))表示這個(gè)數(shù)列的第項(xiàng),那么 , ;
②為了求的值,可令,則,因此,所以,
即.
仿照以上推理,計(jì)算
【答案】(1)①1,18,n;②,,1540;(2)①2,,;②.
【解析】
(1)①觀察一列數(shù)1,2,3,4,5,…,發(fā)現(xiàn)從第二項(xiàng)開(kāi)始,每一項(xiàng)與前一項(xiàng)之差都為1,從而可得常數(shù)為1;根據(jù)此規(guī)律,如果為正整數(shù))=n,據(jù)此即可求得答案;
②觀察可得2n(n+1),從而求得 S;根據(jù)上面得到的式子進(jìn)行計(jì)算即可求得的值;
(2)①觀察一列數(shù)2,4,8,16,32,…,發(fā)現(xiàn)從第二項(xiàng)開(kāi)始,每一項(xiàng)與前一項(xiàng)之比是一個(gè)常數(shù)2,根據(jù)此規(guī)律,可得為正整數(shù))=2n,據(jù)此即可得答案;
②根據(jù)推理進(jìn)行計(jì)算即可求得的值.
(1)①觀察一列數(shù)1,2,3,4,5,…,發(fā)現(xiàn)從第二項(xiàng)開(kāi)始,每一項(xiàng)與前一項(xiàng)之差是一個(gè)常數(shù),這個(gè)常數(shù)是1;根據(jù)此規(guī)律,如果為正整數(shù))表示這個(gè)數(shù)列的第項(xiàng),那么18,n,
故答案為:1,18,n;
②令 ,①
將①式右邊順序倒置,得,②
②+①,得2 =n(1+n),
∴ S=;
==1540,
故答案為:,,1540;
(2)①觀察一列數(shù)2,4,8,16,32,…,發(fā)現(xiàn)從第二項(xiàng)開(kāi)始,每一項(xiàng)與前一項(xiàng)之比是一個(gè)常數(shù),這個(gè)常數(shù)是2;根據(jù)此規(guī)律,如果為正整數(shù))表示這個(gè)數(shù)列的第項(xiàng),那么218,2n,
故答案為:2,,;
②令,
則,
,
,
,
即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AOB=30,∠AOB 內(nèi)有一定點(diǎn) P,且 OP=12,在 OA 上有一動(dòng)點(diǎn) Q,OB 上有 一動(dòng)點(diǎn) R。若△PQR 周長(zhǎng)最小,則最小周長(zhǎng)是( )
A. 6 B. 12 C. 16 D. 20
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:數(shù)軸上有A、B兩點(diǎn),分別對(duì)應(yīng)的數(shù)為a,b,已知(a+1)2與|b﹣3|互為相反數(shù).點(diǎn)P為數(shù)軸上一動(dòng)點(diǎn),對(duì)應(yīng)為x.
(1)a= ;b=
(2)若點(diǎn)P到點(diǎn)A和點(diǎn)B的距離相等,則點(diǎn)P對(duì)應(yīng)的數(shù)是
(3)數(shù)軸上是否存在點(diǎn)P,使點(diǎn)P到點(diǎn)A和點(diǎn)B的距離之和為5?若存在,請(qǐng)求出x的值;若不存在,說(shuō)明理由;
(4)|x﹣a|+|x﹣b|的最小值=
(5)當(dāng)點(diǎn)P以每分鐘1個(gè)單位長(zhǎng)度的速度從O點(diǎn)向左運(yùn)動(dòng),點(diǎn)A以每分鐘5個(gè)單位長(zhǎng)度向左運(yùn)動(dòng),問(wèn)幾分鐘時(shí)點(diǎn)P到點(diǎn)A、點(diǎn)B的距離相等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用同樣大小的圍棋子按如圖所示的方式擺圖案,按照這樣的規(guī)律擺下去,第12個(gè)圖案的圍棋子個(gè)數(shù)是( 。
A. 16 B. 28 C. 29 D. 38
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(11分)如圖1,點(diǎn)A(a,b)在平面直角坐標(biāo)系xOy中,點(diǎn)A到坐標(biāo)軸的垂線段AB,AC與坐標(biāo)軸圍成矩形OBAC,當(dāng)這個(gè)矩形的一組鄰邊長(zhǎng)的和與積相等時(shí),點(diǎn)A稱作“垂點(diǎn)”,矩形稱作“垂點(diǎn)矩形”.
(1)在點(diǎn)P(1,2),Q(2,-2),N(,-1)中,是“垂點(diǎn)”的點(diǎn)為 ;
(2)點(diǎn)M(-4,m)是第三象限的“垂點(diǎn)”,直接寫出m的值 ;
(3)如果“垂點(diǎn)矩形”的面積是,且“垂點(diǎn)”位于第二象限,寫出滿足條件的“垂點(diǎn)”的坐標(biāo) ;
(4)如圖2,平面直角坐標(biāo)系的原點(diǎn)O是正方形DEFG的對(duì)角線的交點(diǎn),當(dāng)正方形DEFG的邊上存在“垂點(diǎn)”時(shí),GE的最小值為8.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿分8分)
如圖,點(diǎn)E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF與DE交于點(diǎn)O.
(1)求證:AB=DC;
(2)試判斷△OEF的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形網(wǎng)格中的每個(gè)小正方形的邊長(zhǎng)都是1,每個(gè)小格的頂點(diǎn)叫做格點(diǎn).
(1)在圖1中以格點(diǎn)為頂點(diǎn)畫一個(gè)面積為5的等腰直角三角形;
(2)在圖2中以格點(diǎn)為頂點(diǎn)畫一個(gè)三角形,使三角形三邊長(zhǎng)分別為2、、 ;
(3)如圖3,點(diǎn)A、B、C是小正方形的頂點(diǎn),求∠ABC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次中學(xué)生田徑運(yùn)動(dòng)會(huì)上,根據(jù)參加男子跳高初賽的運(yùn)動(dòng)員的成績(jī)(單位:m),繪制出如下的統(tǒng)計(jì)圖①和圖②,請(qǐng)根據(jù)相關(guān)信息,解答下列問(wèn)題:
(Ⅰ)圖1中a的值為 ;
(Ⅱ)求統(tǒng)計(jì)的這組初賽成績(jī)數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(Ⅲ)根據(jù)這組初賽成績(jī),由高到低確定9人進(jìn)入復(fù)賽,請(qǐng)直接寫出初賽成績(jī)?yōu)?.65m的運(yùn)動(dòng)員能否進(jìn)入復(fù)賽.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系內(nèi),反比例函數(shù)和二次函數(shù)y=k(x2+x﹣1)的圖象交于點(diǎn)A(1,k)和點(diǎn)B(﹣1,﹣k).
(1)當(dāng)k=﹣2時(shí),求反比例函數(shù)的解析式;
(2)要使反比例函數(shù)和二次函數(shù)都是y隨著x的增大而增大,求k應(yīng)滿足的條件以及x的取值范圍;
(3)設(shè)二次函數(shù)的圖象的頂點(diǎn)為Q,當(dāng)△ABQ是以AB為斜邊的直角三角形時(shí),求k的值.
(4)點(diǎn)C為x軸上一動(dòng)點(diǎn),且C點(diǎn)坐標(biāo)為(2k,0),當(dāng)△ABC是以AB為斜邊的直角三角形時(shí),求K的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com