【題目】為了加強(qiáng)公民的節(jié)水意識,合理利用水資源,某市采用價格調(diào)控的手段達(dá)到節(jié)水的目的,該市自來水收費的收費標(biāo)準(zhǔn)如下表:

例如:某戶居民1月份用水8立方米,應(yīng)收水費為2×6+4×(8-6)=20(元).
請根據(jù)上表的內(nèi)容解答下列問題:
(1)若某戶居民2月份用水5立方米,則應(yīng)收水費元;
(2)若某戶居民3月份交水費36元,則用水量為立方米;
(3)若某戶居民4月份用水a(chǎn)立方米(其中6<a<10),請用含a的代數(shù)式表示應(yīng)收水費元.
(4)若某戶居民 5、6 兩個月共用水18立方米(6月份用水量超過了10立方米),設(shè)5月份用水x立方米,請用含x的代數(shù)式表示該居民5、6兩個月共交水費多少元?

【答案】
(1)10
(2)11
(3)(4a-12)
(4)解:當(dāng)5月份不超過6m3時,水費為(-6x+92)元;

當(dāng)5月份超過6m3時,水費為(-4x+80)元.


【解析】解:(1)2×5=10(元),
故答案為:10;
(2)10+(36-2×6-4×4)÷8=10+1=11(立方米),
故答案為:11;
(3)6×2+4(a-6)=12+4a-24=(4a-12)元,
故答案為:4a-12.
(1)(2)直接利用用水量乘以所在范圍的單價計算;
(3)用6立方米的價錢+(a-6)立方米的價錢來計算;
(4)分5月份不超過6m3和超過6m3兩種情況計算水費.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,需在一面墻上繪制幾個相同的拋物線型圖案按照圖中的直角坐標(biāo)系,最左邊的拋物線可以用(a0)表示已知拋物線上B,C兩點到地面的距離均為m,到墻邊OA的距離分別為m,m

(1)求該拋物線的函數(shù)關(guān)系式,并求圖案最高點到地面的距離;

(2)若該墻的長度為10m,則最多可以連續(xù)繪制幾個這樣的拋物線型圖案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一組連續(xù)奇數(shù)按如圖方式排列,請你解決下列問題:

(1)第7行最后一個數(shù)字是 , 在第15行第4列的數(shù)字是;
(2)請用n的代數(shù)式表示第n行的第1個數(shù)字和最后一個數(shù)字;
(3)現(xiàn)用一個正方形框去圍出相鄰兩行中的4個數(shù)字
(例如:第4行和第5行的15,17,23,25),
請問能否在第50行和第51行中 圍出4個數(shù)字的和是10016?若能,請求出這4個數(shù)字;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC=15,點D是BC邊上的一動點(不與B、C重合),ADE=B=αDEAB于點E,且tan∠α=.有以下的結(jié)論:①△ADE∽△ACD;當(dāng)CD=9時,ACDDBE全等;③△BDE為直角三角形時,BD12;0BE,其中正確的結(jié)論是 (填入正確結(jié)論的序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】195張圖片平均分給若干名學(xué)生,已知每人分得的圖片數(shù)比人數(shù)少2學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的面積為3cm2,E為BC邊上一點,BAE=30°,F(xiàn)為AE的中點,過點F作直線分別與AB,DC相交于點M,N.若MN=AE,則AM的長等于 cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:
(1)5 ﹣7 ﹣4
(2) × ÷
(3)( + )×
(4)(1﹣ )(1+ )+( ﹣1)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是根據(jù)某公園的平面示意圖建立的平面直角坐標(biāo)系,公園的入口位于坐標(biāo)原點O,古塔位于點A(400,300),從古塔出發(fā)沿射線OA方向前行300m是盆景園B,從盆景園B向左轉(zhuǎn)90°后直行400m到達(dá)梅花閣C,則點C的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果將四根木條首尾相連,在相連處用螺釘連接,就能構(gòu)成一個平面圖形.

(1)若固定三根木條AB,BC,AD不動,AB=AD=2cm,BC=5cm,如圖,量得第四根木條CD=5cm,判斷此時∠B與∠D是否相等,并說明理由.

(2)若固定一根木條AB不動,AB=2cm,量得木條CD=5cm,如果木條AD,BC的長度不變,當(dāng)點D移到BA的延長線上時,點C也在BA的延長線上;當(dāng)點C移到AB的延長線上時,點A、C、D能構(gòu)成周長為30cm的三角形,求出木條AD,BC的長度.

查看答案和解析>>

同步練習(xí)冊答案