勾股定理是幾何中的一個(gè)重要定理,在我國古算書《周髀算經(jīng)》中就有“若勾三,股四,則弦五”的記載.如圖1是由邊長相等的小正方形和直角三角形構(gòu)成的,可以用其面積關(guān)系驗(yàn)證勾股定理.圖2是由圖1放入矩形內(nèi)得到的,,,,點(diǎn)都是矩形的邊上,則矩形的面積為----( )
A. B. C. D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
直角三角形兩直角邊邊長分別為6cm和8cm,則連接這兩條直角邊中點(diǎn)的線段長為( )
A.10cm B.3cm C.4cm D.5cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)與x軸、y軸分別相交于點(diǎn)A和點(diǎn)B,直線經(jīng)過點(diǎn)C(1,0)且與線段AB交于點(diǎn)P,并把△ABO分成兩部分.
(1)求△ABO的面積;
(2)若△ABO被直線CP分成的兩部分的面積相等,求點(diǎn)P的坐標(biāo)及直線CP的函數(shù)表達(dá)式。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知的周長為,,.
(1)判斷的形狀;
(2)若為邊上的中線,,的平分線交于點(diǎn),交于點(diǎn),連結(jié).求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖①所示,已知,BC∥OA,∠B=∠A=100°,試回答下列問題:
⑴試說明:OB∥AC;
⑵如圖②,若點(diǎn)E、F在BC上,且∠FOC=∠AOC ,OE平分∠BOF.試求∠EOC的度數(shù);
⑶在⑵的條件下,若左右平行移動(dòng)AC,如圖③,那么∠OCB:∠OFB的比值是否隨之發(fā)生變化?若變化,試說明理由;若不變,求出這個(gè)比值;
⑷在⑶的條件下,當(dāng)∠OEB=∠OCA時(shí),試求∠OCA的度數(shù).
| |||
|
圖③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com