【題目】釣魚(yú)島自古以來(lái)就是我國(guó)的神圣領(lǐng)土,為維護(hù)國(guó)家主權(quán)和海洋權(quán)利,我國(guó)海監(jiān)和漁政部門(mén)對(duì)釣魚(yú)島海域?qū)崿F(xiàn)了常態(tài)化巡航管理.如圖,某日在我國(guó)釣魚(yú)島附近海域有兩艘自西向東航行的海監(jiān)船A、B,B船在A船的正東方向,且兩船保持20海里的距離,某一時(shí)刻兩海監(jiān)船同時(shí)測(cè)得在A的東北方向,B的北偏東15°方向有一我國(guó)漁政執(zhí)法船C,求此時(shí)船C與船B的距離是多少.(結(jié)果保留根號(hào))

【答案】海里

【解析】

首先過(guò)點(diǎn)BBDACD,由題意可知,∠BAC=45°,∠ABC=90°+15°=105°,則可求得∠ACD的度數(shù),然后利用三角函數(shù)的知識(shí)求解即可求得答案.

解:過(guò)點(diǎn)BBDACD

由題意可知,∠BAC=450,∠ABC=900+150=1050,

∴∠ACB=1800﹣∠BAC﹣∠ABC=300

RtABD中,BD=ABsinBAD(海里),

RtBCD中,(海里).

答:此時(shí)船C與船B的距離是海里.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,過(guò)正六邊形的頂點(diǎn)作一條直線于點(diǎn),分別延長(zhǎng)交直線于點(diǎn),則___;若正六邊形的面積為,則的面積為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知OAB在直角坐標(biāo)系中的位置如圖,點(diǎn)A在第一象限,點(diǎn)Bx軸正半軸上,OAOB6,∠AOB30°

1)求點(diǎn)A、B的坐標(biāo);

2)開(kāi)口向上的拋物線經(jīng)過(guò)原點(diǎn)O和點(diǎn)B,設(shè)其頂點(diǎn)為E,當(dāng)OBE為等腰直角三角形時(shí),求拋物線的解析式;

3)設(shè)半徑為2的⊙P與直線OA交于M、N兩點(diǎn),已知,Pm,2)(m0),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線y=﹣x+4x軸交于點(diǎn)A,過(guò)點(diǎn)A的拋物線yax2+bx與直線y=﹣x+4交于另一點(diǎn)B,且點(diǎn)B的橫坐標(biāo)為1

1)該拋物線的解析式為;

2)如圖1,Q為拋物線上位于直線AB上方的一動(dòng)點(diǎn)(不與BA重合),過(guò)QQPx軸,交x軸于P,連接AQ,MAQ中點(diǎn),連接PM,過(guò)MMNPM交直線ABN,若點(diǎn)P的橫坐標(biāo)為t,點(diǎn)N的橫坐標(biāo)為n,求nt的函數(shù)關(guān)系式;在此條件下,如圖2,連接QN并延長(zhǎng),交y軸于E,連接AE,求t為何值時(shí),MNAE

3)如圖3,將直線AB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)15度交拋物線對(duì)稱(chēng)軸于點(diǎn)C,點(diǎn)T為線段OA上的一動(dòng)點(diǎn)(不與O、A重合),以點(diǎn)O為圓心、以OT為半徑的圓弧與線段OC交于點(diǎn)D,以點(diǎn)A為圓心、以AT為半徑的圓弧與線段AC交于點(diǎn)F,連接DF.在點(diǎn)T運(yùn)動(dòng)的過(guò)程中,四邊形ODFA的面積有最大值還是有最小值?請(qǐng)求出該值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在中,弦,垂足為點(diǎn),連接、,

1)求證:

2)如圖2,過(guò)點(diǎn),垂足為點(diǎn),求證:

3)如圖3,在(2)的條件下,延長(zhǎng)、交于點(diǎn),過(guò)點(diǎn),垂足為,交,若,,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtΔABC,∠C=90°,AC=4cm,BC=3cm,動(dòng)點(diǎn)MN從點(diǎn)C同時(shí)出發(fā),均以每秒1cm的速度分別沿CACB向終點(diǎn)A、B移動(dòng),同時(shí)動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒2cm的速度沿BA向終點(diǎn)A移動(dòng),連接PM,PN,MN,設(shè)移動(dòng)時(shí)間為t(單位:秒,0<t<2.5).

(1)當(dāng)t為何值時(shí),ΔMCN面積為2cm?

(2)是否存在某一時(shí)刻t,使四邊形APNC的面積為cm?若存在,求t的值,若不存在,請(qǐng)說(shuō)明理由;

(3)當(dāng)t為何值時(shí),以A、P、M為頂點(diǎn)的三角形與△ABC相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】轉(zhuǎn)轉(zhuǎn)盤(pán)和摸球是等可能概率下的經(jīng)典模型.

(1)在一個(gè)不透明的口袋中,放入除顏色外其余都相同的4個(gè)小球,其中1個(gè)白球,3個(gè)黑球攪勻后,隨機(jī)同時(shí)摸出2個(gè)球,求摸出兩個(gè)都是黑球的概率(要求釆用樹(shù)狀圖或列表法求解);

(2)如圖,轉(zhuǎn)盤(pán)的白色扇形和黑色扇形的圓心角分別為120°240°.讓轉(zhuǎn)盤(pán)自由轉(zhuǎn)動(dòng)2次,求指針2次都落在黑色區(qū)域的概率(要求采用樹(shù)狀圖或列表法求解)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將△ABC放在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,點(diǎn)A、點(diǎn)B、點(diǎn)C均落在格點(diǎn)上

(Ⅰ)線段AB的長(zhǎng)度=________

(Ⅱ)請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無(wú)刻度的直尺,在∠ABC的平分線上找一點(diǎn)P,在BC上找一點(diǎn)Q,使CP+PQ的值最小,并簡(jiǎn)要說(shuō)明點(diǎn)PQ的位置是如何找到的_____________(不要求證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著互聯(lián)網(wǎng)的高速發(fā)展,人們的支付方式發(fā)生了巨大改變,某學(xué)習(xí)小組抽樣調(diào)查了春節(jié)期間某商場(chǎng)顧客的支付方式,主要有現(xiàn)金支付、銀聯(lián)卡支付和手機(jī)支付,調(diào)查得知使用這三種支付的人數(shù)比為,手機(jī)支付已成為市民購(gòu)物便捷支付方式.手機(jī)支付主要有以下三種方式:~支付寶,~微信,~其他.現(xiàn)將使用手機(jī)支付方式人數(shù)的調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖.

1)扇形統(tǒng)計(jì)圖中,________;請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

2)若該商場(chǎng)春節(jié)期間共20000人購(gòu)物,請(qǐng)估計(jì)用支付寶進(jìn)行支付的人數(shù).

3)經(jīng)調(diào)查某天顧客現(xiàn)金支付、銀聯(lián)卡支付、手機(jī)支付每筆交易發(fā)生的平均金額分別為120元、260元、80元,求這天顧客每筆交易的平均金額.

查看答案和解析>>

同步練習(xí)冊(cè)答案