已知關(guān)于x的二次函數(shù)y=ax2+bx+1(a≠0),自變量x的部分取值及對(duì)應(yīng)的函數(shù)值y如下表所示:

x-301
y115

求這個(gè)二次函數(shù)的解析式.

解:根據(jù)題意得,
解得,
所以這個(gè)二次函數(shù)的解析式為y=x2+3x+1.
分析:把(-3,1)和(1,5)代入y=ax2+bx+1(a≠0)得到關(guān)于a、b的方程組,然后解方程求出a、b的值,即可確定二次函數(shù)解析式.
點(diǎn)評(píng):本題考查了用待定系數(shù)法求二次函數(shù)的解析式:在利用待定系數(shù)法求二次函數(shù)關(guān)系式時(shí),要根據(jù)題目給定的條件,選擇恰當(dāng)?shù)姆椒ㄔO(shè)出關(guān)系式,從而代入數(shù)值求解.一般地,當(dāng)已知拋物線上三點(diǎn)時(shí),常選擇一般式,用待定系數(shù)法列三元一次方程組來(lái)求解;當(dāng)已知拋物線的頂點(diǎn)或?qū)ΨQ軸時(shí),常設(shè)其解析式為頂點(diǎn)式來(lái)求解;當(dāng)已知拋物線與x軸有兩個(gè)交點(diǎn)時(shí),可選擇設(shè)其解析式為交點(diǎn)式來(lái)求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的二次函數(shù)y=ax2+bx+c(a>0)的圖象經(jīng)過(guò)點(diǎn)C(0,1),且與x軸交于不同的兩點(diǎn)A、B,點(diǎn)A的坐標(biāo)是(1,0)
(1)求c的值;
(2)求a的取值范圍;
(3)該二次函數(shù)的圖象與直線y=1交于C、D兩點(diǎn),設(shè)A、B、C、D四點(diǎn)構(gòu)成的四邊形的對(duì)角線相交于點(diǎn)P,記△PCD的面積為S1,△PAB的面積為S2,當(dāng)0<a<1時(shí),求證:S1-S2為常數(shù),并求出該常數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的二次函數(shù)y1和y2,其中y1的圖象開(kāi)口向下,與x軸交于點(diǎn)A(-2,0)和點(diǎn)B(4,0),對(duì)稱軸平行于y軸,其頂點(diǎn)M與點(diǎn)B的距離為5,而y2=-
4
9
x2-
16
9
x+
2
9

(I)求二次函數(shù)y1的解析式;
(II)把y2化為y2=a(x-h)2+k的形式;
(III)將y1的圖象經(jīng)過(guò)怎樣的平移能得到y(tǒng)2的圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•河?xùn)|區(qū)二模)已知關(guān)于x的二次函數(shù)同時(shí)滿足下列兩個(gè)條件:①函數(shù)的圖象過(guò)原點(diǎn);②頂點(diǎn)在第一象限,你認(rèn)為符合要求的二次函數(shù)的解析式可以是:
y=-x2+x(答案不唯一)
y=-x2+x(答案不唯一)
(寫出一個(gè)即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的二次函數(shù)y=mx2-(2m-6)x+m-2.
(1)若該函數(shù)的圖象與y軸的交點(diǎn)坐標(biāo)是(0,3),求m的值;
(2)若該函數(shù)圖象的對(duì)稱軸是直線x=2,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的二次函數(shù)y=x2-(2m-1)x+m2
(1)m滿足什么條件時(shí),二次函數(shù)的圖象與x軸有兩個(gè)交點(diǎn)?
(2)設(shè)二次函數(shù)的圖象與x軸的交點(diǎn)為A(x1,0),B(x2,0),且
x
2
1
+
x
2
2
=5
,它的頂點(diǎn)為M,求頂點(diǎn)M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案