如圖1,過△ABC的頂點A作高AD,將點A折疊到點D(如圖2),這時EF為折痕,且△BED和△CFD都是等腰三角形,再將△BED和△CFD沿它們各自的對稱軸EH、FG折疊,使B、C兩點都與點D重合,得到一個矩形EFGH(如圖3),我們稱矩形EFGH為△ABC的邊BC上的折合矩形.
(1)若△ABC的面積為6,則折合矩形EFGH的面積為______;
(2)如圖4,已知△ABC,在圖4中畫出△ABC的邊BC上的折合矩形EFGH;
(3)如果△ABC的邊BC上的折合矩形EFGH是正方形,且BC=2a,那么,BC邊上的高AD=______,正方形EFGH的對角線長為______
【答案】
分析:(1)根據(jù)折疊得出△DEF≌△AEF,△BEH≌△DEH,△CFG≌△DFG,求出矩形EFGH的面積是S
△DEF+S
△DEH+S
△DFG=
S
△ABC,代入求出即可;
(2)根據(jù)已知和折疊性質(zhì),結合圖2畫出即可;
(3)根據(jù)折疊性質(zhì)得出△AEF邊EF上高和△DEF邊EF上高相等,DH=BH,DG=GC,求出HG=
BC,根據(jù)正方形的性質(zhì)求出EF=FG=GH=EH=a,即可求出AD,由勾股定理求出正方形EFGH的對角線即可.
解答:解:(1)∵沿EF折疊A與D重合,
∴△DEF≌△AEF,
∵△BED和△CFD都是等腰三角形,再將△BED和△CFD沿它們各自的對稱軸EH、FG折疊,使B、C兩點都與點D重合,
∴△BEH≌△DEH,△CFG≌△DFG,
∴矩形EFGH的面積是S
△DEF+S
△DEH+S
△DFG=
S
△ABC=
×6=3,
故答案為:3.
(2)如右圖所示:
(3)∵根據(jù)折疊得出△BEH≌△DEH,△CFG≌△DFG,BC=2a,
∴△AEF邊EF上高和△DEF邊EF上高相等,DH=BH,DG=GC,
∴HG=
BC=a,
∵四邊形EFGH是正方形,
∴EF=FG=GH=EH=a,
則AD=2EH=2a,
由勾股定理得:正方形EFGH的對角線是:
=
a,
故答案為:2a,
a.
點評:本題考查了正方形性質(zhì)、折疊性質(zhì)、勾股定理的應用,通過做此題培養(yǎng)了學生的觀察圖形的能力和計算能力,題目比較典型,是一道比較好的題目.