已知拋物線的頂點(diǎn)為P,與y軸交于點(diǎn)A,與直線OP交于點(diǎn)B.

(1)如圖1,若點(diǎn)P的橫坐標(biāo)為1,點(diǎn)B的坐標(biāo)為(3,6),試確定拋物線的解析式;

(2)在(1)的條件下,若點(diǎn)M是直線AB下方拋物線上的一點(diǎn),且, 求點(diǎn)M的坐標(biāo);

(3)如圖2,若點(diǎn)P在第一象限,且PA=PO,過點(diǎn)PPDx軸于點(diǎn)D. 將拋物線平移,平移后的拋物線經(jīng)過點(diǎn)A、D,該拋物線與x軸的另一個(gè)交點(diǎn)為C,請(qǐng)?zhí)骄克倪呅?i>OABC的形狀,并說明理由.

 


          

 

                   圖1                             圖2

解:(1)依題意, , 解得b=-2.

          將b=-2及點(diǎn)B(3, 6)的坐標(biāo)代入拋物線解析式

          .

          解得 c=3.

          所以拋物線的解析式為.  

   (2)∵拋物線 y軸交于點(diǎn)A,

A(0, 3).

B(3, 6),

可得直線AB的解析式為.

設(shè)直線AB下方拋物線上的點(diǎn)M坐標(biāo)為(x,),過M點(diǎn)作y軸的平行線交直線AB于點(diǎn)N, 則N(x, x+3). (如圖1)

           ∴ .       

           ∴.

           解得 .                                         

           ∴點(diǎn)M的坐標(biāo)為(1, 2) 或 (2, 3).              

(3)如圖2,由 PA=PO, OA=c, 可得.

    ∵拋物線的頂點(diǎn)坐標(biāo)為 ,           圖1

    ∴ .

          ∴ .    

          ∴ 拋物線,  A(0,),P), D,0).

          可得直線OP的解析式為.     

          ∵ 點(diǎn)B是拋物線

與直線的圖象的交點(diǎn),

          令 .

          解得.                                圖2

          可得點(diǎn)B的坐標(biāo)為(-b,).         

          由平移后的拋物線經(jīng)過點(diǎn)A, 可設(shè)平移后的拋物線解析式為.

          將點(diǎn)D(,0)的坐標(biāo)代入,得.

          ∴ 平移后的拋物線解析式為

           令y=0, 即.

           解得.

           依題意, 點(diǎn)C的坐標(biāo)為(-b,0).            

           ∴ BC=.

           ∴ BC= OA.

BCOA,

∴ 四邊形OABC是平行四邊形.

           ∵ ∠AOC=90°,

           ∴ 四邊形OABC是矩形.   

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知拋物線的頂點(diǎn)為A(2,1),且經(jīng)過原點(diǎn)O,與x軸的另一個(gè)交點(diǎn)為B.
(1)求拋物線的解析式;
(2)若點(diǎn)C在拋物線的對(duì)稱軸上,點(diǎn)D在拋物線上,且以O(shè)、C、D、B四點(diǎn)為頂點(diǎn)的四邊形為平行四邊形,求D點(diǎn)的坐標(biāo);
(3)連接OA、AB,如圖2,在x軸下方的拋物線上是否存在點(diǎn)P,使得△OBP與△OAB相似?若存在,求出P點(diǎn)的坐標(biāo);若不存在,說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線的頂點(diǎn)為M(5,6),且經(jīng)過點(diǎn)C(-1,0).
(1)求拋物線的解析式;
(2)設(shè)拋物線與y軸交于點(diǎn)A,過A作AB∥x軸,交拋物線于另一點(diǎn)B,則拋物線上存在點(diǎn)P,使△ABP的面積等于△ABO的面積,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo);
(3)將拋物線向右平移,使拋物線經(jīng)過點(diǎn)(5,0),請(qǐng)直接答出曲線段CM(拋精英家教網(wǎng)物線圖象的一部分,如圖中的粗線所示)在平移過程中所掃過的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知拋物線的頂點(diǎn)為A(0,1),矩形CDEF的頂點(diǎn)C、F在拋物線上,點(diǎn)D、E在x軸上,CF交y軸于點(diǎn)B(0,2),且其面積為8:
(1)此拋物線的解析式;
(2)如圖2,若點(diǎn)P為所求拋物線上的一動(dòng)點(diǎn),試判斷以點(diǎn)P為圓心,PB為半徑的圓與x軸的位置關(guān)系,并說明理由.
(3)如圖2,設(shè)點(diǎn)P在拋物線上且與點(diǎn)A不重合,直線PB與拋物線的另一個(gè)交點(diǎn)為Q,過點(diǎn)P、Q分別作x軸的垂線,垂足分別為N、M,連接PO、QO.求證:△QMO∽△PNO.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•衡陽)如圖所示,已知拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn)O,矩形ABCD的頂點(diǎn)A,D在拋物線上,且AD平行x軸,交y軸于點(diǎn)F,AB的中點(diǎn)E在x軸上,B點(diǎn)的坐標(biāo)為(2,1),點(diǎn)P(a,b)在拋物線上運(yùn)動(dòng).(點(diǎn)P異于點(diǎn)O)
(1)求此拋物線的解析式.
(2)過點(diǎn)P作CB所在直線的垂線,垂足為點(diǎn)R,
①求證:PF=PR;
②是否存在點(diǎn)P,使得△PFR為等邊三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
③延長(zhǎng)PF交拋物線于另一點(diǎn)Q,過Q作BC所在直線的垂線,垂足為S,試判斷△RSF的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線的頂點(diǎn)為(-1,-2),且通過(1,10),則這條拋物線的表達(dá)式為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案