(2006•鄂州)如圖,甲、乙兩漁船同時(shí)從港口出發(fā)外出捕魚(yú),乙沿南偏東30°方向以每小時(shí)10海里的速度航行,甲沿南偏西75°方向以每小時(shí)10海里的速度航行,當(dāng)航行1小時(shí)后,甲在A處發(fā)現(xiàn)自己的漁具掉在乙船上,于是迅速改變航向和速度,仍以勻速沿南偏東60°方向追趕乙船,正好在B處追上.則甲船追趕乙船的速度為    海里/小時(shí).
【答案】分析:根據(jù)題意畫(huà)圖,過(guò)O向AB作垂線,根據(jù)特殊角的三角函數(shù)值求得AC、BC的值,從而求得AB的值.根據(jù)追及問(wèn)題的求法求甲船追趕乙船的速度.
解答:解:如圖:乙沿南偏東30°方向航行則∠DOB=30°,甲沿南偏西75°方向航行,則∠AOD=75°,
當(dāng)航行1小時(shí)后甲沿南偏東60°方向追趕乙船,則∠2=90°-60°=30°.
∵∠3=∠AOD=75°,
∴∠1=90°-75°=15°,
故∠1+∠2=15°+30°=45°.
過(guò)O向AB作垂線,則∠AOC=90°-∠1-∠2=90°-15°-30°=45°,
∵OA=10,∠OAB=∠AOC=45°,
∴OC=AC=OA•sin45°=10×=10.
在Rt△OBC中,∠BOC=∠AOD+∠BOD-∠AOC=75°+30°-45°=60°,
∴BC=OC•tan60°=10,
∴AB=AC+BC=10+10
因?yàn)镺C=10海里,∠B=30°,所以O(shè)B=2OC=2×10=20,
乙船從O到B所用時(shí)間為20÷10=2小時(shí),
由于甲從O到A所用時(shí)間為1小時(shí),則從A到B所用時(shí)間為2-1=1小時(shí),
甲船追趕乙船的速度為10+10海里/小時(shí).
點(diǎn)評(píng):此題是一道方向角問(wèn)題,結(jié)合航海中的實(shí)際問(wèn)題,將解直角三角形的相關(guān)知識(shí)有機(jī)結(jié)合,體現(xiàn)了數(shù)學(xué)應(yīng)用于實(shí)際生活的思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2006年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(10)(解析版) 題型:解答題

(2006•鄂州)如圖,直線y=-+8與x軸、y軸分別交于點(diǎn)A和B,M是OB上的一點(diǎn),若將△ABM沿AM折疊,點(diǎn)B恰好落在x軸上的點(diǎn)B′處.
(1)試確定直線AM的函數(shù)關(guān)系式;
(2)求過(guò)A、B、M三點(diǎn)的拋物線的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年湖北省鄂州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•鄂州)如圖,直線y=-+8與x軸、y軸分別交于點(diǎn)A和B,M是OB上的一點(diǎn),若將△ABM沿AM折疊,點(diǎn)B恰好落在x軸上的點(diǎn)B′處.
(1)試確定直線AM的函數(shù)關(guān)系式;
(2)求過(guò)A、B、M三點(diǎn)的拋物線的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年湖北省鄂州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•鄂州)如圖,在梯形ABCD中,AD∥BC,∠B=90°,AB=3 cm,AD=8 cm,BC=12 cm,點(diǎn)P從點(diǎn)B開(kāi)始沿折線B?C?D?A以4 cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)D開(kāi)始沿DA邊向A點(diǎn)以1 cm/s的速度移動(dòng).若點(diǎn)P、Q分別從B、D同時(shí)出發(fā),當(dāng)其中一個(gè)點(diǎn)到達(dá)點(diǎn)A時(shí),另一點(diǎn)也隨之停止移動(dòng).設(shè)移動(dòng)時(shí)間為t(s).
求當(dāng)t為何值時(shí):
(1)四邊形PCDQ為平行四邊形;
(2)四邊形PCDQ為等腰梯形;
(3)PQ=3cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年湖北省鄂州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•鄂州)如圖,已知⊙Ol與⊙O2相交于A、B兩點(diǎn),過(guò)點(diǎn)A作⊙Ol的弦AC,連接CB并延長(zhǎng)交⊙O2于點(diǎn)D,連AD.若∠CAB=∠D.
(1)求證:AC是⊙O2的切線;
(2)若AB:AD=1:2,CD=6,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年湖北省鄂州市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2006•鄂州)如圖,在等腰梯形ABCD中,AB∥CD,AC⊥BD,垂足為O.有以下四個(gè)結(jié)論:①△AOD≌△BOC;②△AOB∽△COD;③S梯形ABCD=;④S△AOD2=S△AOB•S△COD.其中始終正確的有( )

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案