【題目】某單位向一所希望小學(xué)贈(zèng)送1080件文具,現(xiàn)用A、B兩種不同的包裝箱進(jìn)行包裝,已知每個(gè)B型包裝箱能裝的文具是A型包裝箱1.5倍,單獨(dú)使用B型包裝箱比單獨(dú)使用A型包裝箱可少用12個(gè)。那么AB型包裝箱每個(gè)分別可以裝多少件文具?

【答案】每個(gè)A型包裝箱可以裝文具30件,每個(gè)B型包裝箱可以裝文具45件.

【解析】

設(shè)每個(gè)A型包裝箱可以裝文具x件,則每個(gè)B型包裝箱可以裝文具1.5x件,根據(jù)裝1080件文具單獨(dú)使用B型包裝箱比單獨(dú)使用A型包裝箱可少用12個(gè),即可得出關(guān)于x的分式方程,解之經(jīng)檢驗(yàn)后即可得出結(jié)論.

解:設(shè)每個(gè)A型包裝箱可以裝文具x件,則每個(gè)B型包裝箱可以裝文具1.5 x件,根據(jù)題意得

解得:x=30
經(jīng)檢驗(yàn),x=30是原方程的解,且符合題意.

當(dāng)x=301.5 x =45
答:每個(gè)A型包裝箱可以裝文具30件,每個(gè)B型包裝箱可以裝文具45件.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某種新能源汽車(chē)的性能,對(duì)這種汽車(chē)進(jìn)行了抽檢,將一次充電后行駛的里程數(shù)分為AB,CD四個(gè)等級(jí),其中相應(yīng)等級(jí)的里程依次為200千米,210千米,220千米,230千米,獲得如下不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:

1)這次被抽檢的新能源汽車(chē)共有   輛;

2)將圖1補(bǔ)充完整;在圖2中,C等級(jí)所占的圓心角是   度;

3)估計(jì)這種新能源汽車(chē)一次充電后行駛的平均里程數(shù)為多少千米?(精確到千米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰△ABC中,ABAC3cm,∠B30°,點(diǎn)DBC邊上由CB勻速運(yùn)動(dòng)(D不與B、C重合),勻速運(yùn)動(dòng)速度為1cm/s,連接AD,作∠ADE30°DE交線(xiàn)段AC于點(diǎn)E

1)在此運(yùn)動(dòng)過(guò)程中,∠BDA逐漸變   (填“大”或“小”);D點(diǎn)運(yùn)動(dòng)到圖1位置時(shí),∠BDA75°,則∠BAD   

2)點(diǎn)D運(yùn)動(dòng)3s后到達(dá)圖2位置,則CD   .此時(shí)△ABD和△DCE是否全等,請(qǐng)說(shuō)明理由;

3)在點(diǎn)D運(yùn)動(dòng)過(guò)程中,△ADE的形狀也在變化,判斷當(dāng)△ADE是等腰三角形時(shí),∠BDA等于多少度(請(qǐng)直接寫(xiě)出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示:

1)直接寫(xiě)出點(diǎn)A的坐標(biāo),點(diǎn)A關(guān)于x軸的對(duì)稱(chēng)點(diǎn)B的坐標(biāo),點(diǎn)B關(guān)于y軸的對(duì)稱(chēng)點(diǎn)C的坐標(biāo).

2)畫(huà)出將線(xiàn)段BC向右平移2個(gè)單位,再向上平移4個(gè)單位后的線(xiàn)段B′C′,并直接寫(xiě)出B′的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程

1

2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,都是等邊三角形,,下列結(jié)論中,正確的個(gè)數(shù)是( );②;③;④若,且,則

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把一張對(duì)面互相平行的紙條折成如圖所示,EF是折痕,若∠EFB=32°,則下列結(jié)論不正確的有( ).

A.B.AEC=148°C.BGE=64°D.BFD=116°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖∠AED=C,DEF=B,請(qǐng)你說(shuō)明∠1與∠2相等嗎?為什么?

:因?yàn)椤?/span>AED=C(已知)

所以

所以∠B+BDE=180°

因?yàn)椤?/span>DEF=B(已知)

所以∠DEF+BDE=180°

所以

所以∠1=2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列等式:

①; ②; ……

根據(jù)上述規(guī)律解決下列問(wèn)題:

1)完成第四個(gè)等式: ;

2)猜想第個(gè)等式(用含的式子表示),并證明其正確性.

查看答案和解析>>

同步練習(xí)冊(cè)答案