【題目】如圖,在平行四邊形中,邊BC在x軸上.且BC=6,平行四邊形ABCD的面積為12,C是拋物線頂點(diǎn),A,D在拋物線上,求拋物線的解析式.
【答案】y=(x-3)2
【解析】
由平行四邊形ABCD的面積為12且BC=6易得A(0,2),再由拋物線的對(duì)稱性及AD=BC=6易得拋物線的對(duì)稱軸為直線x=3,則可知頂點(diǎn)C的坐標(biāo)為(3,0);設(shè)頂點(diǎn)式,代入A點(diǎn)即可求解拋物線解析式.
平行四邊形ABCD的面積為12,
∵.,
∴,
∴A(0,2),
∵四邊形ABCD為平行四邊形,
∴AD=BC=6,AD//BC,
∴A、D為拋物線上的對(duì)稱點(diǎn),
∴拋物線的對(duì)稱軸為直線x=3,
∴頂點(diǎn)C的坐標(biāo)為(3,0),
設(shè)拋物線的解析式為,把A(0,2)代入,
得,解得a=,
∴拋物線的解析式為y=(x-3)2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列一組方程:;;;;它們的根有一定的規(guī)律,都是兩個(gè)連續(xù)的自然數(shù),我們稱這類一元二次方程為“連根一元二次方程”.
若也是“連根一元二次方程”,寫出k的值,并解這個(gè)一元二次方程;
請(qǐng)寫出第n個(gè)方程和它的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=﹣x2+bx+c的圖象與x軸交于A、B兩點(diǎn),與y軸交于C(0,3),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0).點(diǎn)P是拋物線上一個(gè)動(dòng)點(diǎn),且在直線BC的上方.
(1)求這個(gè)二次函數(shù)的表達(dá)式.
(2)連接PO、PC,并把△POC沿CO翻折,得到四邊形POP′C,那么是否存在點(diǎn)P,使四邊形POP′C為菱形?若存在,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形 ABPC的面積最大,并求出此時(shí)點(diǎn)P的坐標(biāo)和四邊形ABPC的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(6分)如圖,熱氣球的探測(cè)器顯示,從熱氣球A處看一棟高樓頂部B的仰角為30°,看這棟高樓底部C的俯角為65°,熱氣球與高樓的水平距離AD為120m.求這棟高樓的高度.(結(jié)果用含非特殊角的三角函數(shù)及根式表示即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn),AD與過點(diǎn)C的切線垂直,垂足為點(diǎn)D,直線DC與AB的延長(zhǎng)線相交于點(diǎn)P,弦CE平分∠ACB,交AB點(diǎn)F,連接BE.
(1)求證:AC平分∠DAB;
(2)求證:PC=PF;
(3)若tan∠ABC=,AB=14,求線段PC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A(1,0)、C(﹣2,3)兩點(diǎn),與y軸交于點(diǎn)N,其頂點(diǎn)為D.
(1)求拋物線及直線AC的函數(shù)關(guān)系式;
(2)若P是拋物線上位于直線AC上方的一個(gè)動(dòng)點(diǎn),求△APC的面積的最大值及此時(shí)點(diǎn)P的坐標(biāo);
(3)在對(duì)稱軸上是否存在一點(diǎn)M,使△ANM的周長(zhǎng)最小.若存在,請(qǐng)求出M點(diǎn)的坐標(biāo)和△ANM周長(zhǎng)的最小值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓O是的外接圓,AE平分交圓O于點(diǎn)E,交BC于點(diǎn)D,過點(diǎn)E作直線.
(1)判斷直線l與圓O的關(guān)系,并說明理由;
(2)若的平分線BF交AD于點(diǎn)F,求證:;
(3)在(2)的條件下,若,,求AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖.電路圖上有四個(gè)開關(guān)A、B、C、D和一個(gè)小燈泡,閉合開關(guān)D或同時(shí)閉合開關(guān)A,B,C都可使小燈泡發(fā)光.
(1)任意閉合其中一個(gè)開關(guān),則小燈泡發(fā)光的概率等于 ;
(2)任意閉合其中兩個(gè)開關(guān),請(qǐng)用畫樹狀圖或列表的方法求出小燈泡發(fā)光的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題探究
(1)如圖①,在矩形ABCD中,AB=3,BC=4,如果BC邊上存在點(diǎn)P,使△APD為等腰三角形,那么請(qǐng)畫出滿足條件的一個(gè)等腰三角形△APD,并求出此時(shí)BP的長(zhǎng);
(2)如圖②,在△ABC中,∠ABC=60°,BC=12,AD是BC邊上的高,E、F分別為邊AB、AC的中點(diǎn),當(dāng)AD=6時(shí),BC邊上存在一點(diǎn)Q,使∠EQF=90°,求此時(shí)BQ的長(zhǎng);
問題解決
(3)有一山莊,它的平面圖為如圖③的五邊形ABCDE,山莊保衛(wèi)人員想在線段CD上選一點(diǎn)M安裝監(jiān)控裝置,用來監(jiān)視邊AB,現(xiàn)只要使∠AMB大約為60°,就可以讓監(jiān)控裝置的效果達(dá)到最佳,已知∠A=∠E=∠D=90°,AB=270m,AE=400m,ED=285m,CD=340m,問在線段CD上是否存在點(diǎn)M,使∠AMB=60°?若存在,請(qǐng)求出符合條件的DM的長(zhǎng),若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com