【題目】如圖,已知為等邊三角形,,點為邊上一點,過點作.交于點;過點作,交的延長線于點.設(shè),的面積為,則能大致反映與函數(shù)關(guān)系的圖象是( )
A.B.
C.D.
【答案】A
【解析】
根據(jù)平行線的性質(zhì)可得∠EDC=∠B=60°,根據(jù)三角形內(nèi)角和定理即可求得∠F=30°,然后證得△EDC是等邊三角形,從而求得ED=DC=2﹣x,再根據(jù)直角三角形的性質(zhì)求得EF,最后根據(jù)三角形的面積公式求得y與x函數(shù)關(guān)系式,根據(jù)函數(shù)關(guān)系式即可判定.
∵△ABC是等邊三角形,
∴∠ABC=60°,
∵DE∥AB,
∴∠EDC=∠ABC=60°,
∵EF⊥DE,
∴∠DEF=90°,
∴∠F=90°﹣∠EDF=30°;
∵∠ACB=60°,∠EDB=60°,
∴△EDB是等邊三角形.
∴ED=DB=2﹣x,
∵∠DEF=90°,∠F=30°,
∴EF=ED=(2﹣x).
∴y=EDEF=(2﹣x)(2﹣x),
即y=(x﹣2)2,(x<2)
故選:A
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB:BC=3:4,點E是對角線BD上一動點(不與點B,D重合),將矩形沿過點E的直線MN折疊,使得點A,B的對應(yīng)點G,F分別在直線AD與BC上,當(dāng)△DEF為直角三角形時,CN:BN的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,弦CD⊥AB,垂足為F,CG⊥AE,交弦AE的延長線于點G,且CG=CF.
(1)求證:CG是⊙O的切線;
(2)若AE=2,EG=1,求由弦BC和所圍成的弓形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九年七班組織學(xué)生參加漢字聽寫比賽,比賽分為甲乙丙三組進(jìn)行,下面兩幅統(tǒng)計圖反映了學(xué)生參加比賽的報名情況,請你根據(jù)圖中信息回答下列問題:
(1)該班報名參加本次活動的總?cè)藬?shù)為 人.
(2)該班報名參加丙組的人數(shù)為 人,并補全頻數(shù)分布直方圖;
(3)比賽后選取男女各2名同學(xué)進(jìn)行培訓(xùn),若從中選2名參加校賽,試用列表或畫樹狀圖的方法,求恰好選中一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BE是O的直徑,點A和點D是⊙O上的兩點,過點A作⊙O的切線交BE延長線于點.
(1)若∠ADE=25°,求∠C的度數(shù);
(2)若AB=AC,CE=2,求⊙O半徑的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,以為直徑作半圓,交于點,連接,過點作,垂足為點,交的延長線于點.
(1)求證:是的切線;
(2)如果的徑為5,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是由6 6個邊長為1的小正方形網(wǎng)格組成,每個小正方形的頂點稱為格點,△ABC的三個頂點A,B,C均在格點上,請僅用無刻度的直尺,按下列要求畫圖.
(1)在圖1中找一個格點D,使以點A、B、C、D為頂點的四邊形是平行四邊形(畫出一種情況即可)
(2)在圖2中僅用無刻度的直尺,把線段AB三等分(保留畫圖痕跡,不寫畫法)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】廣宇、承義兩名同學(xué)分別進(jìn)行5次射擊訓(xùn)練,訓(xùn)練成績(單位:環(huán))如下表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
廣宇 | 9 | 8 | 7 | 7 | 9 |
承義 | 6 | 8 | 10 | 8 | 8 |
對他們的訓(xùn)練成績作如下分析,其中說法正確的是( )
A.廣宇訓(xùn)練成績的平均數(shù)大于承義訓(xùn)練成績平均數(shù)
B.廣宇訓(xùn)練成績的中位數(shù)與承義訓(xùn)練成績中位數(shù)不同
C.廣宇訓(xùn)練成績的眾數(shù)與承義訓(xùn)練成績眾數(shù)相同
D.廣宇訓(xùn)練成績比承義訓(xùn)練成績更加穩(wěn)定
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com