(2013•路北區(qū)三模)如圖,已知△ABC中,∠ABC=90°,AB=BC,三角形的頂點(diǎn)在相互平行的三條直線l1、l2、l3上,且相鄰兩平行線之間的距離均為1,則AC的長(zhǎng)是( 。
分析:過A、C點(diǎn)作l3的垂線構(gòu)造出直角三角形,根據(jù)三角形全等和勾股定理求出BC的長(zhǎng),再利用勾股定理即可求出.
解答:解:作AD⊥l3于D,作CE⊥l3于E,
∵∠ABC=90°,
∴∠ABD+∠CBE=90°
又∵∠DAB+∠ABD=90°
∴∠BAD=∠CBE
又∵AB=BC,∠ADB=∠BEC
∴△ABD≌△BCE
∴BE=AD=1
在Rt△BCE中,根據(jù)勾股定理,得BC=
22+12
=
5
,
在Rt△ABC中,根據(jù)勾股定理,得AC=
5
×
2
=
10

故選D.
點(diǎn)評(píng):此題要作出平行線間的距離,構(gòu)造直角三角形.運(yùn)用全等三角形的判定和性質(zhì)以及勾股定理進(jìn)行計(jì)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•路北區(qū)三模)某市教育局為了了解初一學(xué)生第一學(xué)期參加社會(huì)實(shí)踐活動(dòng)的天數(shù),隨機(jī)抽查本市部分初一學(xué)生第一學(xué)期參加社會(huì)實(shí)踐活動(dòng)的天數(shù),并用得到的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計(jì)圖(如圖).

請(qǐng)你根據(jù)圖中提供的信息,回答下列問題:
(1)a=
25
25
%,并寫出該扇形所對(duì)圓心角的度數(shù)為
90
90
;補(bǔ)全條形圖;
(2)在這次抽樣調(diào)查中,眾數(shù)和中位數(shù)分別是多少?
(3)如果該市有初一學(xué)生20000人,請(qǐng)你估計(jì)“活動(dòng)時(shí)間不少于5天”的大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•路北區(qū)三模)如圖,在△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D,點(diǎn)P、Q分別從B、C兩點(diǎn)同時(shí)出發(fā),其中點(diǎn)P沿BC向終點(diǎn)C運(yùn)動(dòng),速度為1cm/s;點(diǎn)Q沿CA、AB向終點(diǎn)B運(yùn)動(dòng),速度為2cm/s,設(shè)它們運(yùn)動(dòng)的時(shí)間為x(s).
(1)求x為何值時(shí),PQ⊥AC;
(2)設(shè)△PQD的面積為y(cm2),當(dāng)0<x<2時(shí),求y與x的函數(shù)關(guān)系式;
(3)當(dāng)0<x<2時(shí),求證:AD平分△PQD的面積;
(4)探索以PQ為直徑的圓與AC的位置關(guān)系,請(qǐng)寫出相應(yīng)位置關(guān)系的x的取值范圍(不要求寫出過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•路北區(qū)三模)已知扇形的半徑為2,圓心角為60°,則扇形的弧長(zhǎng)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•路北區(qū)三模)已知:如圖,直線MN交⊙O于A、B兩點(diǎn),AC是直徑,AD平分∠CAM交⊙O于點(diǎn)D,過點(diǎn)D作DE⊥MN,垂足為E.
(1)求證:DE是⊙O的切線;
(2)若∠ADE=30°,⊙O的半徑為2,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•路北區(qū)三模)若|+a|=2,則a的值為(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案