精英家教網 > 初中數學 > 題目詳情
(2009•江西)(1)方程0.25x=1的解是x=   
(2)用計算器計算:    .(結果保留三個有效數字)
【答案】分析:(1)根據等式性質:兩邊同除以0.25即可解答;
(2)首先利用計算器求出13的算術平方根,然后即可求出結果.
解答:解:(1)∵0.25x=1,
兩邊同時乘以4得,
∴x=4.
(2)-3.142
≈3.6055-3.142
=0.4636
≈0.464.
點評:本題除了考查解方程之外,還要熟知有效數字的概念:從左邊第一個不為零的數字起,到精確到的數位止,所有的數字叫做這個數的有效數字.
練習冊系列答案
相關習題

科目:初中數學 來源:2011年山西省陽泉市盂縣九年級(下)第一次月考數學試卷(解析版) 題型:解答題

(2009•江西)如圖,拋物線y=-x2+2x+3與x軸相交于A、B兩點(點A在點B的左側),與y軸相交于點C,頂點為D.
(1)直接寫出A、B、C三點的坐標和拋物線的對稱軸;
(2)連接BC,與拋物線的對稱軸交于點E,點P為線段BC上的一個動點,過點P作PF∥DE交拋物線于點F,設點P的橫坐標為m;
①用含m的代數式表示線段PF的長,并求出當m為何值時,四邊形PEDF為平行四邊形?
②設△BCF的面積為S,求S與m的函數關系式.

查看答案和解析>>

科目:初中數學 來源:2011年湖北省荊州市江陵縣三湖中學九年級(下)第一次月考數學試卷(解析版) 題型:解答題

(2009•江西)如圖,拋物線y=-x2+2x+3與x軸相交于A、B兩點(點A在點B的左側),與y軸相交于點C,頂點為D.
(1)直接寫出A、B、C三點的坐標和拋物線的對稱軸;
(2)連接BC,與拋物線的對稱軸交于點E,點P為線段BC上的一個動點,過點P作PF∥DE交拋物線于點F,設點P的橫坐標為m;
①用含m的代數式表示線段PF的長,并求出當m為何值時,四邊形PEDF為平行四邊形?
②設△BCF的面積為S,求S與m的函數關系式.

查看答案和解析>>

科目:初中數學 來源:2009年全國中考數學試題匯編《二次函數》(08)(解析版) 題型:解答題

(2009•江西)如圖,拋物線y=-x2+2x+3與x軸相交于A、B兩點(點A在點B的左側),與y軸相交于點C,頂點為D.
(1)直接寫出A、B、C三點的坐標和拋物線的對稱軸;
(2)連接BC,與拋物線的對稱軸交于點E,點P為線段BC上的一個動點,過點P作PF∥DE交拋物線于點F,設點P的橫坐標為m;
①用含m的代數式表示線段PF的長,并求出當m為何值時,四邊形PEDF為平行四邊形?
②設△BCF的面積為S,求S與m的函數關系式.

查看答案和解析>>

科目:初中數學 來源:2009年江西省中考數學試卷(解析版) 題型:解答題

(2009•江西)如圖,拋物線y=-x2+2x+3與x軸相交于A、B兩點(點A在點B的左側),與y軸相交于點C,頂點為D.
(1)直接寫出A、B、C三點的坐標和拋物線的對稱軸;
(2)連接BC,與拋物線的對稱軸交于點E,點P為線段BC上的一個動點,過點P作PF∥DE交拋物線于點F,設點P的橫坐標為m;
①用含m的代數式表示線段PF的長,并求出當m為何值時,四邊形PEDF為平行四邊形?
②設△BCF的面積為S,求S與m的函數關系式.

查看答案和解析>>

科目:初中數學 來源:2009年江西省南昌市中考數學試卷(解析版) 題型:解答題

(2009•江西)如圖,拋物線y=-x2+2x+3與x軸相交于A、B兩點(點A在點B的左側),與y軸相交于點C,頂點為D.
(1)直接寫出A、B、C三點的坐標和拋物線的對稱軸;
(2)連接BC,與拋物線的對稱軸交于點E,點P為線段BC上的一個動點,過點P作PF∥DE交拋物線于點F,設點P的橫坐標為m;
①用含m的代數式表示線段PF的長,并求出當m為何值時,四邊形PEDF為平行四邊形?
②設△BCF的面積為S,求S與m的函數關系式.

查看答案和解析>>

同步練習冊答案