【題目】下列事件中,是隨機事件的是( )
A.2019年1月有31天
B.2019年4月7日豐都廟會開幕式當天天氣晴朗
C.踢飛在空中的足球會下落
D.早上的太陽從東方升起
科目:初中數(shù)學 來源: 題型:
【題目】閱讀解題過程,回答問題.
如圖,OC在∠AOB內,∠AOB和∠COD都是直角,且∠BOC=30°,求∠AOD的度數(shù).
解:過O點作射線OM,使點M,O,A在同一直線上.
因為∠MOD+∠BOD=90°,∠BOC+∠BOD=90°,所以∠BOC=∠MOD,
所以∠AOD=180°-∠BOC=180°-30°=150°.
(1)如果∠BOC=60°,那么∠AOD等于多少度?如果∠BOC=n°,那么∠AOD等于多少度?
(2)如果∠AOB=∠DOC=x°,∠AOD=y°,求∠BOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料:點A、B在數(shù)軸上分別表示實數(shù)a、b,A、B兩點之間的距離表示為∣AB∣.
當A、B兩點中有一點在原點時,不妨設點A在原點,
如圖1,∣AB∣=∣OB∣=∣b∣=∣a-b∣;
當A、B兩點都不在原點時,
如圖2,點A、B都在原點的右邊
∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=b-a=∣a-b∣;
如圖3,點A、B都在原點的左邊,
∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=-b-(-a)=∣a-b∣;
如圖4,點A、B在原點的兩邊,
∣AB∣=∣OB∣+∣OA∣=∣a∣+∣b∣= a +(-b)=∣a-b∣;
回答下列問題:
(1)數(shù)軸上表示3和7的兩點之間的距離是 ,數(shù)軸上表示-1和-3的兩點之間的距離是 ,數(shù)軸上表示1和-2的兩點之間的距離是 .
(2)數(shù)軸上表示x和-2的兩點A和B之間的距離是 ,如果∣AB∣=2,那么x為 ;
(3)當代數(shù)式∣x∣+∣x-1∣取最小值時,最小值是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題中,假命題是( )
A.一組對邊相等,另一組對邊平行的四邊形是平行四邊形 B.三個角是直角的四邊形是矩形
C.四邊相等的四邊形是菱形D.有一個角是直角的菱形是正方形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為判斷命題“有三條邊相等且一組對角相等的四邊形是菱形”的真假,數(shù)學課上,老師給出菱形ABCD如圖1,并作出了一個四邊形ABC′D.具體作圖過程如下:
如圖2,在菱形ABCD中,
①連接BD,以點B為圓心,以BD的長為半徑作圓弧,交CD于點P;
②分別以B、D為圓心,以BC、PC的長為半徑作圓弧,兩弧交于點C′.
③連接BC′、DC′,得四邊形ABC′D.
依據(jù)上述作圖過程,解決以下問題:
(1)求證:∠A=∠C′;AD=BC′.
(2)根據(jù)作圖過程和(1)中的結論,說明命題“有三條邊相等且有一組對頂角相等的四邊形是菱形”是命題.(填寫“真”或“假”)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題:如圖(1),點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,試判斷BE、EF、FD之間的數(shù)量關系.
【發(fā)現(xiàn)證明】小聰把△ABE繞點A逆時針旋轉90°至△ADG,從而發(fā)現(xiàn)EF=BE+FD,請你利用圖(1)證明上述結論.
【類比引申】如圖(2),四邊形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,點E、F分別在邊BC、CD上,則當∠EAF與∠BAD滿足 關系時,仍有EF=BE+FD.
【探究應用】如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分別有景點E、F,且AE⊥AD,DF=40(﹣1)米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長(結果取整數(shù),參考數(shù)據(jù): =1.41, =1.73)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com