解:連接AC、BD,AC與BD相交于點M,過點M作ME⊥x軸于點E,過點C作CF⊥x軸于點F,
∵C(10,4),
∴AF=10,CF=4,
∵四邊形ABCD為平行四邊形,
∴AM=CM,即
=
,
∵ME⊥x軸,CF⊥x軸,
∴∠MEA=∠CFA=90°,
∴ME∥CF,
∴∠AME=∠ACF,∠AEM=∠AFC,
∴△AME∽△ACF,
∴
=
=
,即E為AF的中點,
∴ME為△AFC的中位線,…
∴AE=
AF=5,ME=
CF=2,
∴M(5,2),
∵直線y=ax-2a-1將平行四邊形ABCD分成面積相等的兩部分,
∴直線y=ax-2a-1經(jīng)過點M,
將M(5,2)代入y=ax-2a-1得:a=1.
分析:連接AC、BD,AC與BD相交于點M,過點M作ME⊥x軸于點E,過點C作CF⊥x軸于點F,由直線將平行四邊形分成面積相等的兩部分,得到此直線過平行四邊形對角線的交點M,接下來求M的坐標(biāo),由平行四邊形的對角線互相平分,得到M為AC的中點,再由ME與CF都與x軸垂直,得到ME與CF平行,可得出兩對同位角相等,根據(jù)兩對對應(yīng)角相等的兩三角形相似,可得三角形AME與三角形ACF相似,由M為AC的中點得到相似三角形的相似比為1:2,可得E為AF的中點,由C的坐標(biāo)得到AF與CF的長,又ME為三角形ACF的中位線,根據(jù)中位線定理得到ME為CF的一半,求出ME的長,由AE為AF的一半,求出AE的長,確定出M的坐標(biāo),把M的坐標(biāo)代入直線方程中,得到關(guān)于a的方程,求出方程的解即可得到a的值.
點評:此題屬于一次函數(shù)的綜合題,涉及的知識有:平行四邊形的性質(zhì),相似三角形的判定與性質(zhì),平行線的性質(zhì),三角形中位線定理,其中根據(jù)題意得出直線過平行四邊形的中心M是解本題的關(guān)鍵.