【題目】如圖,已知拋物線y=(x2﹣7x+6)的頂點坐標(biāo)為M,與x軸相交于A,B兩點(點B在點A的右側(cè)),與y軸相交于點C.

(1)用配方法將拋物線的解析式化為頂點式:y=a(x﹣h)2+k(a≠0),并指出頂點M的坐標(biāo);
(2)在拋物線的對稱軸上找點R,使得CR+AR的值最小,并求出其最小值和點R的坐標(biāo);
(3)以AB為直徑作⊙N交拋物線于點P(點P在對稱軸的左側(cè)),求證:直線MP是⊙N的切線.

【答案】
(1)

【解答】解:∵y=(x2﹣7x+6)=(x2﹣7x)﹣3=(x﹣2+,

∴拋物線的解析式化為頂點式為:y=(x﹣2+

頂點M的坐標(biāo)是(,);


(2)

解:∵y=(x2﹣7x+6),

∴當(dāng)y=0時,(x2﹣7x+6)=0,

解得x=1或6,

∴A(1,0),B(6,0),

∵x=0時,y=﹣3,

∴C(0,﹣3).

連接BC,則BC與對稱軸x=的交點為R,連接AR,

則CR+AR=CR+BR=BC,根據(jù)兩點之間線段最短可知此時CR+AR的值最小,

最小值為BC==

設(shè)直線BC的解析式為y=kx+b,

∵B(6,0),C(0,﹣3),

,

解得

∴直線BC的解析式為:y=x﹣3,

令x=,得y=×﹣3=,

∴R點坐標(biāo)為();


(3)

證明:設(shè)點P坐標(biāo)為(x,x2+x﹣3).

∵A(1,0),B(6,0),

∴N(,0),

∴以AB為直徑的⊙N的半徑為AB=,

∴NP=

即(x﹣2+(x2+x﹣3)2=(2,

化簡整理得,x4﹣14x3+65x2﹣112x+60=0,

(x﹣1)(x﹣2)(x﹣5)(x﹣6)=0,

解得x1=1(與A重合,舍去),x2=2,x3=5(在對稱軸的右側(cè),舍去),x4=6(與B重合,舍去),

∴點P坐標(biāo)為(2,2).

∵M(jìn)(,),N(,0),

∴PM2=(2﹣2+(2﹣2=,

PN2=(2﹣2+22==

MN2=(2=,

∴PM2+PN2=MN2

∴∠MPN=90°,

∵點P在⊙N上,

∴直線MP是⊙N的切線.


【解析】(1)利用配方法先提出二次項系數(shù),再加上一次項系數(shù)的一半的平方來湊完全平方式,即可把一般式轉(zhuǎn)化為頂點式,然后根據(jù)二次函數(shù)的性質(zhì)求出拋物線的頂點坐標(biāo);
(2)連接BC,則BC與對稱軸的交點為R,此時CR+AR的值最。幌惹蟪鳇cA、B、C的坐標(biāo),再利用待定系數(shù)法求出直線BC的解析式,進(jìn)而求出其最小值和點R的坐標(biāo);
(3)設(shè)點P坐標(biāo)為(x,﹣x2+x﹣3).根據(jù)NP=AB=列出方程(x﹣2+(﹣x2+x﹣3)2=(2 , 解方程得到點P坐標(biāo),再計算得出PM2+PN2=MN2 , 根據(jù)勾股定理的逆定理得出∠MPN=90°,然后利用切線的判定定理即可證明直線MP是⊙N的切線.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點A、B、C是直徑為6cm的⊙O上的點,且AB=3cm,AC=3 cm,則∠BAC的度數(shù)為(
A.15°
B.75°或15°
C.105°或15°
D.75°或105°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=a(x﹣m)2+2m﹣2(其中m>1)頂點為P,與y軸相交于點A(0,m﹣1).連接并延長PA、PO分別與x軸、拋物線交于點B、C,連接BC,將△PBC繞點P逆時針旋轉(zhuǎn)得△PB′C′,使點C′正好落在拋物線上.

(1)該拋物線的解析式為(用含m的式子表示);
(2)求證:BC∥y軸;
(3)若點B′恰好落在線段BC′上,求此時m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個頂點的坐標(biāo)分別為A(﹣1,1),B(﹣3,1),C(﹣1,4).

(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1;
(2)將△ABC繞著點B順時針旋轉(zhuǎn)90°后得到△A2BC2 , 請在圖中畫出△A2BC2 , 并求出線段BC旋轉(zhuǎn)過程中所掃過的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,G,E分別是正方形ABCD的邊AB,BC的點,且AG=CE,AE⊥EF,AE=EF,現(xiàn)有如下結(jié)論:
①BE=GE; ②△AGE≌△ECF; ③∠FCD=45°; ④△GBE∽△ECH,其中,正確的結(jié)論有(  )

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知購買1個足球和1個籃球共需130元,購買2個足球和1個籃球共需180元.
(1)求每個足球和每個籃球的售價;
(2)如果某校計劃購買這兩種球共54個,總費(fèi)用不超過4000元,問最多可買多少個籃球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)道路管理規(guī)定,在賀州某段筆直公路上行駛的車輛,限速40千米/時,已知交警測速點M到該公路A點的距離為米,∠MAB=45°,∠MBA=30°(如圖所示),現(xiàn)有一輛汽車由A往B方向勻速行駛,測得此車從A點行駛到B點所用的時間為3秒.

(1)求測速點M到該公路的距離;
(2)通過計算判斷此車是否超速.(參考數(shù)據(jù):≈1.41,≈1.73,≈2.24)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市團(tuán)委在2015年3月初組成了300個學(xué)雷鋒小組,現(xiàn)從中隨機(jī)抽取6個小組在3月份做好事件數(shù)的統(tǒng)計情況如圖所示:

(1)這6個學(xué)雷鋒小組在2015年3月份共做好事多少件?
(2)補(bǔ)全條形統(tǒng)計圖;
(3)請估計該市300個學(xué)雷鋒小組在2015年3月份共做好事多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+3的對稱軸是直線x=1.
(1)求證:2a+b=0
(2)若關(guān)于x的方程ax2+bx﹣8=0的一個根為4,求方程的另一個根.

查看答案和解析>>

同步練習(xí)冊答案