精英家教網 > 初中數學 > 題目詳情
如圖,已知⊙O上的三點A、B、C,且AB=AC=6cm,BC=10cm
(1)求證:∠AOB=∠AOC;
(2)求圓片的半徑R(結果保留根號);
(3)若在(2)題中的R的值滿足n<R<m(其中m、n為正整數),試估算m的最小值和n的最大值.

【答案】分析:(1)由AB=AC,根據弧、圓心角、弦的關系,即可證得:∠AOB=∠AOC;
(2)由垂徑定理,可求得BD的長,然后由勾股定理求得AD的長,繼而可得方程:R2=(R-2+25,解此方程即可求得答案;
(3)首先估計的取值范圍,則可求得R的取值范圍,繼而求得答案.
解答:(1)證明:∵AB=AC,
=
∴∠AOB=∠AOC;

(2)解:設OA交BC于點D,
=,
∴OA⊥BC,
∴BD=BC=×10=5(cm),
∵AB=6cm,
∴在Rt△ABD中,AD==(cm),
∵OB=Rcm,
則OD=(R-)cm,
∵OB2=OD2+BD2,
∴R2=(R-2+25,
解得:R=(cm);

(3)∵3<<4,
∴4<<6
∴m=6,n=4.
點評:此題考查了垂徑定理,圓心角、弧弦的關系以及勾股定理.此題難度適中,注意掌握數形結合思想與方程思想的應用.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,已知⊙O上的三點A、B、C,且AB=AC=6cm,BC=10cm
(1)求證:∠AOB=∠AOC;
(2)求圓片的半徑R(結果保留根號);
(3)若在(2)題中的R的值滿足n<R<m(其中m、n為正整數),試估算m的最小值和n的最大值.

查看答案和解析>>

科目:初中數學 來源:2013屆江蘇泰州中學附屬初中九年級第一次考試數學試卷(帶解析) 題型:解答題

如圖,已知⊙O上的三點A、B、C,且AB="AC=6" cm,BC=10cm
(1)求證:∠AOB=∠AOC
(2)求圓片的半徑R(結果保留根號);
(3)若在(2)題中的R的值滿足n<R<m(其中m、n為正整數),試估算m的最小值和n的最大值.

查看答案和解析>>

科目:初中數學 來源:2012-2013學年江蘇泰州中學附屬初中九年級第一次考試數學試卷(解析版) 題型:解答題

如圖,已知⊙O上的三點A、B、C,且AB=AC=6 cm,BC=10cm

(1)求證:∠AOB=∠AOC

(2)求圓片的半徑R(結果保留根號);

(3)若在(2)題中的R的值滿足n<R<m(其中m、n為正整數),試估算m的最小值和n的最大值.

 

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,已知⊙O上的三點A、B、C,且AB=AC=6cm,BC=10cm
(1)求證:∠AOB=∠AOC;
(2)求圓片的半徑R(結果保留根號);
(3)若在(2)題中的R的值滿足n<R<m(其中m、n為正整數),試估算m的最小值和n的最大值.

查看答案和解析>>

同步練習冊答案