【題目】如圖.從下列四個條件:①BC=B′C,②AC=A′C,③∠A′CA=∠B′CB,④AB=A′B′中,任取三個為條件,余下的一個為結論,則最多可以構成正確的結論的個數(shù)是(
A.1個
B.2個
C.3個
D.4個

【答案】B
【解析】解:當①②③為條件,④為結論時: ∵∠A′CA=∠B′CB,
∴∠A′CB′=∠ACB,
∵BC=B′C,AC=A′C,
∴△A′CB′≌△ACB,
∴AB=A′B′,
當①②④為條件,③為結論時:
∵BC=B′C,AC=A′C,AB=A′B′
∴△A′CB′≌△ACB,
∴∠A′CB′=∠ACB,
∴∠A′CA=∠B′CB.
故選B.
根據(jù)全等三角形的判定定理,可以推出①②③為條件,④為結論,依據(jù)是“SAS”;①②④為條件,③為結論,依據(jù)是“SSS”.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線軸交于、兩點,與軸交于點

(1)請直接寫出A、BC三點的坐標:

A B C

(2)點P從點A出發(fā),在線段AB上以每秒3個單位長度的速度向點B運動,同時點Q 從點B出發(fā),在線段BC上以每秒1個單位長度的速度向點C運動.其中一個點到達終點時,另一個點也停止運動.設運動的時間為t(秒),

① 當t為何值時,BPBQ?

② 是否存在某一時刻t,使△BPQ是直角三角形?若存在,請求出所有符合條件的t的值,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請從以下兩個小題中任選一個作答,若多選,則按第一題計分.

A.一個八邊形的外角和是___度.

B.計劃在樓層間修建一個坡角為35°的樓梯,若樓層間高度為2.7m,為了節(jié)省成本,現(xiàn)要將樓梯坡角增加11°,則樓梯的斜面長度約減少__m.(用科學計算器計算,結果精確到0.01m)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)定義運算對于任意有理數(shù)ab,都有ababb,232×33請根據(jù)以上定義解答下列各題

1 2(-3)=___________,x(-2)=___________;

2 化簡[(-x3] (-2);

3 x 3(-x),x的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】x2bxc=(x+5)(x-3),其中b,c為常數(shù),則點P(b,c)關于y軸對稱的點的坐標是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】等腰三角形一腰上的高與另一邊的夾角為80°,則頂角的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】因式分解:

(1)2x3-4x2+2x;

(2)(mn)(3mn)2+(m+3n)2(nm).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)據(jù)1,3,5,6,3,5,3的眾數(shù)是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知代數(shù)式,當時,該代數(shù)式的值為-1.

1)求的值。

2)已知當時,該代數(shù)式的值為-1,求的值。

3)已知當時,該代數(shù)式的值為9,試求當時該代數(shù)式的值。

4)在第(3)小題已知條件下,若有成立,試比較的大小。

查看答案和解析>>

同步練習冊答案