【題目】如圖,已知菱形ABCD的對(duì)角線相交于點(diǎn)O,延長(zhǎng)AB至點(diǎn)E,使BE=AB,連結(jié)CE.

(1)求證:BD=EC;
(2)若AC=2, , 求菱形ABCD的面積.

【答案】
(1)證明:∵四邊形ABCD為菱形
∴AB∥CD, AB=CD
∵BE=AB
∴BE∥CD且BE=CD
∴四邊形BECD為平行四邊形
∴DB=CE
(2)解:∵四邊形BECD為平行四邊形
∴DB∥CE
∴∠E=∠OBA

∵四邊形ABCD為菱形
∴∠AOB=90°,




【解析】(1)要證BD=EC,可證四邊形BECD為平行四邊形,利用一組對(duì)邊即BE、CD平行且相等可證出結(jié)論;(2)可利用菱形的面積公式,即兩對(duì)角線積的一半,利用sin ∠ OBA = sin ∠ E,求出OA,進(jìn)而求出BD,求出面積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,對(duì)角線交于點(diǎn),,點(diǎn)分別是的中點(diǎn),于點(diǎn).有下列4個(gè)結(jié)論:①;②;③;④,其中說法正確的有(  )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線與雙曲線相交于A21)、B兩點(diǎn).

1)求mk的值;

2)不解關(guān)于x、y的方程組直接寫出點(diǎn)B的坐標(biāo);

3)直線經(jīng)過點(diǎn)B嗎?請(qǐng)說明理由.

【答案】1m=1,k=2;(2)(-1,-2);(3)經(jīng)過

【解析】試題分析:(1)把A2,1)分別代入直線與雙曲線即可求得結(jié)果;

2)根據(jù)函數(shù)圖象的特征寫出兩個(gè)圖象的交點(diǎn)坐標(biāo)即可;

3)把x=1m=1代入即可求得y的值,從而作出判斷.

1)把A21)分別代入直線與雙曲線的解析式得m=1,k=2

2)由題意得B的坐標(biāo)(-1,-2);

3)當(dāng)x=1,m=1代入y=2×(1)+4×(1)=24=2

所以直線經(jīng)過點(diǎn)B(1,-2).

考點(diǎn):反比例函數(shù)的性質(zhì)

點(diǎn)評(píng):反比例函數(shù)的性質(zhì)是初中數(shù)學(xué)的重點(diǎn),是中考常見題,一般難度不大,需熟練掌握.

型】解答
結(jié)束】
20

【題目】某氣球內(nèi)充滿了一定質(zhì)量的氣球,當(dāng)溫度不變時(shí),氣球內(nèi)氣球的壓力p(千帕)是氣球的體積V(2)的反比例函數(shù),其圖象如圖所示(千帕是一種壓強(qiáng)單位)

1)寫出這個(gè)函數(shù)的解析式;

2)當(dāng)氣球的體積為0.8立方米時(shí),氣球內(nèi)的氣壓是多少千帕;

3)當(dāng)氣球內(nèi)的氣壓大于144千帕?xí)r,氣球?qū)⒈,為了安全起見,氣球的體積應(yīng)不小于多少立方米。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果反比例函數(shù)的圖象經(jīng)過點(diǎn)(32),那么下列各點(diǎn)中在此函數(shù)圖象上的點(diǎn)是(

A.-,3B.9,C.-2D.6,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c的頂點(diǎn)坐標(biāo)為(2,9),與y軸交于點(diǎn)A(0,5),與x軸交于點(diǎn)E,B.

(1)求二次函數(shù)y=ax2+bx+c的解析式;
(2)過點(diǎn)A作AC平行于x軸,交拋物線于點(diǎn)C,點(diǎn)P為拋物線上的一點(diǎn)(點(diǎn)P在AC上方),作PD平行于y軸交AB于點(diǎn)D,問當(dāng)點(diǎn)P在何位置時(shí),四邊形APCD的面積最大?并求出最大面積;
(3)若點(diǎn)M在拋物線上,點(diǎn)N在其對(duì)稱軸上,使得以A,E,N,M為頂點(diǎn)的四邊形是平行四邊形,且AE為其一邊,求點(diǎn)M,N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線 的對(duì)稱軸為 ,交 軸的一個(gè)交點(diǎn)為( ,0),且 , 則下列結(jié)論:① ;② ;③ ;④ . 其中正確的命題有( )個(gè).
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】給定關(guān)于 的二次函數(shù) ,
學(xué)生甲:當(dāng) 時(shí),拋物線與 軸只有一個(gè)交點(diǎn),因此當(dāng)拋物線與 軸只有一個(gè)交點(diǎn)時(shí), 的值為3;
學(xué)生乙:如果拋物線在 軸上方,那么該拋物線的最低點(diǎn)一定在第二象限;
請(qǐng)判斷學(xué)生甲、乙的觀點(diǎn)是否正確,并說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】感知:解不等式 .根據(jù)兩數(shù)相除,同號(hào)得正,異號(hào)得負(fù),得不等式組 或不等式組 解不等式組 ,得 ;解不等式組 ,得 ,所以原不等式的解集為

1)探究:解不等式

2)應(yīng)用:不等式 的解集是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖:長(zhǎng)方形ABCD中,點(diǎn)EBC邊的中點(diǎn),將D折起,使點(diǎn)D落在點(diǎn)E處.

1)請(qǐng)你用尺規(guī)作圖畫出折痕和折疊后的圖形.(不要求寫已知,求作和作法,保留作圖痕跡)

2)若折痕與AD、BC分別交于點(diǎn)M、N,與DE交于點(diǎn)O,求證△MDO≌△NEO

查看答案和解析>>

同步練習(xí)冊(cè)答案