(1)a2•(-2a2)2÷a3-2a3
(2)(5a-4b)2-(5a-4b)(3a-2b)
(3)(2x-1)(2x+1)(4x2-1)
(4)(x-2y+3)(x+2y-3)
解:(1)a2•(-2a2)2÷a3-2a3,
=a2•4a4÷a3-2a3,
=4a3-2a3,
=2a3;
(2)(5a-4b)2-(5a-4b)(3a-2b),
=(25a2-40ab+16b2)-(15a2-22ab+8b2),
=25a2-40ab+16b2-15a2+22ab-8b2,
=10a2-18ab+8b2;
(3)(2x-1)(2x+1)(4x2-1),
=(4x2-1)2,
=16x4-8x2+1;
(4)(x-2y+3)(x+2y-3),
=[x-(2y-3)][x+(2y-3)],
=x2-(2y-3)2,
=x2-4y2+12y-9.
分析:(1)根據(jù)整式混合運(yùn)算的順序,先算乘方,再算乘除,最后算減法;
(2)先運(yùn)用完全平方公式和多項(xiàng)式的乘法法則分別計(jì)算乘方和乘法,再合并同類項(xiàng);
(3)運(yùn)用平方差公式先算(2x-1)(2x+1),把得到的積與(4x2-1)相乘,再運(yùn)用完全平方公式計(jì)算,可得出結(jié)果;
(4)符合平方差公式的結(jié)構(gòu)特征,運(yùn)用平方差公式計(jì)算.
點(diǎn)評(píng):本題綜合考查了整式運(yùn)算的多個(gè)考點(diǎn).包括合并同類項(xiàng)的法則,冪的運(yùn)算性質(zhì),多項(xiàng)式的乘法法則,平方差公式與完全平方公式等,需熟練掌握,才不容易出錯(cuò).