(2009•伊春)如圖,點A、B的坐標分別為(4,0)、(0,8),點C是線段OB上一動點,點E在x軸正半軸上,四邊形OEDC是矩形,且OE=2OC.設OE=t(t>0),矩形OEDC與△AOB重合部分的面積為S.
根據(jù)上述條件,回答下列問題:
(1)當矩形OEDC的頂點D在直線AB上時,求t的值;
(2)當t=4時,求S的值;
(3)直接寫出S與t的函數(shù)關系式(不必寫出解題過程);
(4)若S=12,則t=______.

【答案】分析:(1)證明△BCD∽△BOA,利用線段比求出t值.
(2)當t=4時,點E與A重合,證明△CBF∽△OBA求出CF.
(3)根據(jù)t的取值范圍求出S的值.
解答:解:(1)由題意可得∠BCD=∠BOA=90°,∠CBD=∠OBA,
∴△BCD∽△BOA,

,

解得,
∴當點D在直線AB上時,.(2分)

(2)當t=4時,點E與A重合,設CD與AB交于點F,
則由△CBF∽△OBA得,
,
解得CF=3,
.(3分)

(3)①當時,(1分)
②當時,(1分)
③當4<t≤16時,(1分)
分析:①當時,如圖(1),
②當時,如圖(2),
∵A(4,0),B(0,8),∴直線AB的解析式為y=-2x+8,

,
=
③當4<t≤16時,如圖(3)
∵CD∥OA,∴△BCF∽△BOA,∴,∴,∴,


(4)8(2分)
分析:由題意可知把S=12代入中,
整理,得t2-32t+192=0,
解得t1=8,t2=24>16(舍去),
∴當S=12時,t=8.

點評:本題考查的是二次函數(shù)的綜合運用,相似三角形的判定以及考生的做題能力.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2009•伊春)如圖,拋物線y=x2+bx+c經(jīng)過A(-,0)、B(0,-3)兩點,此拋物線的對稱軸為直線l,頂點為C,且l與直線AB交于點D.
(1)求此拋物線的解析式;
(2)直接寫出此拋物線的對稱軸和頂點坐標;
(3)連接BC,求證:BC=CD.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2009•伊春)如圖,點A、B的坐標分別為(4,0)、(0,8),點C是線段OB上一動點,點E在x軸正半軸上,四邊形OEDC是矩形,且OE=2OC.設OE=t(t>0),矩形OEDC與△AOB重合部分的面積為S.
根據(jù)上述條件,回答下列問題:
(1)當矩形OEDC的頂點D在直線AB上時,求t的值;
(2)當t=4時,求S的值;
(3)直接寫出S與t的函數(shù)關系式(不必寫出解題過程);
(4)若S=12,則t=______.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年浙江省溫州市直十校聯(lián)盟中考數(shù)學一模試卷(解析版) 題型:解答題

(2009•伊春)如圖,點A、B的坐標分別為(4,0)、(0,8),點C是線段OB上一動點,點E在x軸正半軸上,四邊形OEDC是矩形,且OE=2OC.設OE=t(t>0),矩形OEDC與△AOB重合部分的面積為S.
根據(jù)上述條件,回答下列問題:
(1)當矩形OEDC的頂點D在直線AB上時,求t的值;
(2)當t=4時,求S的值;
(3)直接寫出S與t的函數(shù)關系式(不必寫出解題過程);
(4)若S=12,則t=______.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年黑龍江省佳木斯市中考數(shù)學試卷(解析版) 題型:解答題

(2009•伊春)如圖,點A、B的坐標分別為(4,0)、(0,8),點C是線段OB上一動點,點E在x軸正半軸上,四邊形OEDC是矩形,且OE=2OC.設OE=t(t>0),矩形OEDC與△AOB重合部分的面積為S.
根據(jù)上述條件,回答下列問題:
(1)當矩形OEDC的頂點D在直線AB上時,求t的值;
(2)當t=4時,求S的值;
(3)直接寫出S與t的函數(shù)關系式(不必寫出解題過程);
(4)若S=12,則t=______.

查看答案和解析>>

同步練習冊答案