如果方程組數(shù)學(xué)公式的解與方程組的數(shù)學(xué)公式解相同,則a、b的值是


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
C
分析:把x=4,y=0代入關(guān)于a,b的方程,即可得到一個(gè)關(guān)于a,b的方程組,即可求解.
解答:根據(jù)題意得:,
解得:
故選C.
點(diǎn)評(píng):本題主要考查了方程組的定義,正確根據(jù)方程則的定義得到關(guān)于a,b的方程組是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

我國(guó)著名數(shù)學(xué)家蘇步青在訪問(wèn)德國(guó)時(shí),德國(guó)一位數(shù)學(xué)家給他出了這樣一道題目:
甲、乙二人相對(duì)而行,他們相距10千米,甲每小時(shí)走3千米,乙每小時(shí)走2千米,甲帶著一條狗,狗每小時(shí)跑5千米,狗跑得快,它同甲一起出發(fā),碰到乙的時(shí)候向甲跑去,碰到甲的時(shí)候又向乙跑去,問(wèn)當(dāng)甲、乙兩人相遇時(shí),這條狗一共跑了多少千米?
蘇步青教授很快就解出了這道題目.同學(xué)們,你知道他是怎么解的嗎?
這道題最讓人迷惑不解的是甲身邊的那條狗.如果我們先計(jì)算狗從甲的身邊跑到乙的身邊的路程s,再計(jì)算狗從乙的身邊跑到甲的身邊的路程s,…,顯然把狗跑的路程相加,這樣很繁瑣,笨拙且不易計(jì)算.蘇教授從整體著眼,根據(jù)甲、乙出發(fā)到相遇經(jīng)歷的時(shí)間與狗所走的時(shí)間相等,即10÷(3+2)=2(小時(shí)),這樣就不難求出狗一共跑的路程是:5×2=10(千米).
蘇步青教授在解題時(shí),把注意力和著眼點(diǎn)放在問(wèn)題的整體結(jié)構(gòu)上,從而能觸及問(wèn)題的實(shí)質(zhì):狗從出發(fā)到甲、乙兩相遇所用的時(shí)間,恰好是甲、乙二人相遇所用的時(shí)間,從而使問(wèn)題得到巧妙地解決.蘇教授這種解決問(wèn)題的思想方法實(shí)際上就是數(shù)學(xué)中的整體思想的應(yīng)用.對(duì)于某些數(shù)學(xué)問(wèn)題,靈活運(yùn)用整體思想,常可化難為易,捷足先登.在解二元一次方程組時(shí),也要注意這種思想方法的應(yīng)用.
比如解方程組
x+2(x+2y)=4
x+2y=1

解:把②代入①得x+2×1=4,所以x=2
把x=2代入②得2+2y=1,解之,得y=-
1
2

所以方程組的解為
x=2
y=-
1
2

同學(xué)們,你會(huì)用同樣的方法解下面兩個(gè)方程嗎?試試看!
(1)
2x-3y-2=0
2x-3y+5
7
+2y=9
(2)
x-3y
3
-
1
3
=1
2x-
x-3y
x
=5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)學(xué)學(xué)習(xí)中,及時(shí)對(duì)知識(shí)進(jìn)行歸納和整理是改善學(xué)習(xí)的重要方法.善于學(xué)習(xí)的小明在學(xué)習(xí)了一次方程(組)、一元一次不等式和一次函數(shù)后,把相關(guān)知識(shí)歸納整理如下:
一次函數(shù)與方程的關(guān)系:

      1. <dfn id="3yjix"></dfn>
        <dfn id="3yjix"><thead id="3yjix"></thead></dfn>

        (1)一次函數(shù)的解析式就是一個(gè)二元一次方程;
        (2)點(diǎn)B的橫坐標(biāo)是方程①的解;
        (3)點(diǎn)C的坐標(biāo)(x,y)中的x,y的值是方程組②的解.一次函數(shù)與不等式的關(guān)系;
        (1)函數(shù) y=kx+b的函數(shù)值y大于0時(shí),自變量x的取值范圍就是不等式③的解集;
        (2)函數(shù)y=kx+b的函數(shù)值y小于0時(shí),自變量x的取值范圍就是不等式④的解集;(1)請(qǐng)根據(jù)以上方框中的內(nèi)容在下面數(shù)學(xué)序號(hào)后邊的橫線上寫(xiě)出相應(yīng)的結(jié)論:
        kx+b=0
        kx+b=0

        y=kx+b
        y=k1x+b1
        y=kx+b
        y=k1x+b1

        kx+b>0
        kx+b>0

        kx+b<0
        kx+b<0

        (2)如圖,如果點(diǎn)C的坐標(biāo)為(1,3),那么不等式kx+b≥k1x+b1的解集是
        x≤1
        x≤1

        查看答案和解析>>

        科目:初中數(shù)學(xué) 來(lái)源:同步輕松練習(xí)(七年級(jí)數(shù)學(xué)下) 題型:013

        下列說(shuō)法錯(cuò)誤的是.

        [  ]

        A.方程組的解滿足方程2xy=3

        B.方程3x-2y=-5的解一定是方程組的解

        C.方程組的解是方程5xy=-2的解

        D.如果關(guān)于x、y的方程組與方程組的解相同,那么這個(gè)解也就是方程組的解

        查看答案和解析>>

        科目:初中數(shù)學(xué) 來(lái)源:1997年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(01)(解析版) 題型:解答題

        (1997•內(nèi)江)已知一個(gè)二次函數(shù)的圖象為拋物線C,點(diǎn)P(1,-4)、Q(5,-4)、R(3,0)在拋物線C上.
        (1)求這個(gè)二次函數(shù)的解析式.
        (2)我們知道,與y=kx+b(即kx-y+b=0)可以表示直線一樣,方程x+my+n=0也可以表示一條直線,且對(duì)于直線x+my+n=0和拋物線y=ax2+bx+c(a≠0),方程組的解(x,y)作為點(diǎn)的坐標(biāo),所確定的點(diǎn)就是直線和拋物線的公共點(diǎn),如果直線L:x+my+n=0過(guò)點(diǎn)M(1,0),且直線L與拋物線C有且只有一個(gè)公共點(diǎn),求相應(yīng)的m,n的值.

        查看答案和解析>>

        科目:初中數(shù)學(xué) 來(lái)源:1997年四川省內(nèi)江市中考數(shù)學(xué)試卷(加試卷) 題型:解答題

        (1997•內(nèi)江)已知一個(gè)二次函數(shù)的圖象為拋物線C,點(diǎn)P(1,-4)、Q(5,-4)、R(3,0)在拋物線C上.
        (1)求這個(gè)二次函數(shù)的解析式.
        (2)我們知道,與y=kx+b(即kx-y+b=0)可以表示直線一樣,方程x+my+n=0也可以表示一條直線,且對(duì)于直線x+my+n=0和拋物線y=ax2+bx+c(a≠0),方程組的解(x,y)作為點(diǎn)的坐標(biāo),所確定的點(diǎn)就是直線和拋物線的公共點(diǎn),如果直線L:x+my+n=0過(guò)點(diǎn)M(1,0),且直線L與拋物線C有且只有一個(gè)公共點(diǎn),求相應(yīng)的m,n的值.

        查看答案和解析>>

        同步練習(xí)冊(cè)答案