某運(yùn)輸公司用10輛相同的汽車將一批蘋果運(yùn)到外地,每輛汽車能裝8噸甲種蘋果,或10噸乙種蘋果,或11噸丙種蘋果.公司規(guī)定每輛車只能裝同一種蘋果,而且必須滿載.已知公司運(yùn)送了甲、乙、丙三種蘋果共100噸,且每種蘋果不少于一車.
(1)設(shè)用x輛車裝甲種蘋果,y輛車裝乙種蘋果,求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)若運(yùn)送三種蘋果所獲利潤(rùn)的情況如下表所示:
蘋果品種
每噸蘋果所獲利潤(rùn)(萬(wàn)元)0.220.210.20
設(shè)此次運(yùn)輸?shù)睦麧?rùn)為W(萬(wàn)元),問(wèn):如何安排車輛分配方案才能使運(yùn)輸利潤(rùn)W最大,并求出最大利潤(rùn).
【答案】分析:(1)根據(jù)“甲、乙、丙三種蘋果共100噸”列二元一次方程,變形后得出y與x之間的關(guān)系式為y=-3x+10.
根據(jù)實(shí)際意義即y≥1,x≥1,得到x的取值范圍是x=1或x=2或x=3;
(2)寫出利潤(rùn)與x之間的函數(shù)關(guān)系:W=-0.14x+21,根據(jù)W隨x的增大而減小,所以x取1時(shí),可獲得最大利潤(rùn)20.86萬(wàn)元.
得出最佳的運(yùn)輸方案.
解答:解:(1)∵8x+10y+11(10-x-y)=100,
∴y與x之間的函數(shù)關(guān)系式為y=-3x+10.
∵y≥1,解得x≤3.
∵x≥1,10-x-y≥1,且x是正整數(shù),
∴自變量x的取值范圍是x=1或x=2或x=3.

解:(2)W=8x×0.22+10y×0.21+11(10-x-y)×0.2=-0.14x+21.
因?yàn)閃隨x的增大而減小,所以x取1時(shí),可獲得最大利潤(rùn),
此時(shí)W=20.86(萬(wàn)元).
獲得最大運(yùn)輸利潤(rùn)的方案為:用1輛車裝甲種蘋果,用7輛車裝乙種蘋果,2輛車裝丙種蘋果.
點(diǎn)評(píng):主要考查利用一次函數(shù)的模型解決實(shí)際問(wèn)題的能力.要先根據(jù)題意列出函數(shù)關(guān)系式,再代數(shù)求值.解題的關(guān)鍵是要分析題意根據(jù)實(shí)際意義準(zhǔn)確的列出解析式,再把對(duì)應(yīng)值代入求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、某運(yùn)輸公司用10輛相同的汽車將一批蘋果運(yùn)到外地,每輛汽車能裝8噸甲種蘋果,或10噸乙種蘋果,或11噸丙種蘋果.公司規(guī)定每輛車只能裝同一種蘋果,而且必須滿載.已知公司運(yùn)送了甲、乙、丙三種蘋果共100噸,且每種蘋果不少于一車.
(1)設(shè)用x輛車裝甲種蘋果,y輛車裝乙種蘋果,求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)若運(yùn)送三種蘋果所獲利潤(rùn)的情況如下表所示:
蘋果品種
每噸蘋果所獲利潤(rùn)(萬(wàn)元) 0.22 0.21 0.20
設(shè)此次運(yùn)輸?shù)睦麧?rùn)為W(萬(wàn)元),問(wèn):如何安排車輛分配方案才能使運(yùn)輸利潤(rùn)W最大,并求出最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年北京市中考數(shù)學(xué)二模練習(xí)試卷(二)(解析版) 題型:解答題

某運(yùn)輸公司用10輛相同的汽車將一批蘋果運(yùn)到外地,每輛汽車能裝8噸甲種蘋果,或10噸乙種蘋果,或11噸丙種蘋果.公司規(guī)定每輛車只能裝同一種蘋果,而且必須滿載.已知公司運(yùn)送了甲、乙、丙三種蘋果共100噸,且每種蘋果不少于一車.
(1)設(shè)用x輛車裝甲種蘋果,y輛車裝乙種蘋果,求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)若運(yùn)送三種蘋果所獲利潤(rùn)的情況如下表所示:
蘋果品種
每噸蘋果所獲利潤(rùn)(萬(wàn)元)0.220.210.20
設(shè)此次運(yùn)輸?shù)睦麧?rùn)為W(萬(wàn)元),問(wèn):如何安排車輛分配方案才能使運(yùn)輸利潤(rùn)W最大,并求出最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年四川省內(nèi)江市威遠(yuǎn)縣向義鎮(zhèn)初級(jí)中學(xué)校中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

某運(yùn)輸公司用10輛相同的汽車將一批蘋果運(yùn)到外地,每輛汽車能裝8噸甲種蘋果,或10噸乙種蘋果,或11噸丙種蘋果.公司規(guī)定每輛車只能裝同一種蘋果,而且必須滿載.已知公司運(yùn)送了甲、乙、丙三種蘋果共100噸,且每種蘋果不少于一車.
(1)設(shè)用x輛車裝甲種蘋果,y輛車裝乙種蘋果,求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)若運(yùn)送三種蘋果所獲利潤(rùn)的情況如下表所示:
蘋果品種
每噸蘋果所獲利潤(rùn)(萬(wàn)元)0.220.210.20
設(shè)此次運(yùn)輸?shù)睦麧?rùn)為W(萬(wàn)元),問(wèn):如何安排車輛分配方案才能使運(yùn)輸利潤(rùn)W最大,并求出最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年北京市西城區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2009•西城區(qū)一模)某運(yùn)輸公司用10輛相同的汽車將一批蘋果運(yùn)到外地,每輛汽車能裝8噸甲種蘋果,或10噸乙種蘋果,或11噸丙種蘋果.公司規(guī)定每輛車只能裝同一種蘋果,而且必須滿載.已知公司運(yùn)送了甲、乙、丙三種蘋果共100噸,且每種蘋果不少于一車.
(1)設(shè)用x輛車裝甲種蘋果,y輛車裝乙種蘋果,求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)若運(yùn)送三種蘋果所獲利潤(rùn)的情況如下表所示:
蘋果品種
每噸蘋果所獲利潤(rùn)(萬(wàn)元)0.220.210.20
設(shè)此次運(yùn)輸?shù)睦麧?rùn)為W(萬(wàn)元),問(wèn):如何安排車輛分配方案才能使運(yùn)輸利潤(rùn)W最大,并求出最大利潤(rùn).

查看答案和解析>>

同步練習(xí)冊(cè)答案