的平方根為         。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


閱讀與理解:

(1)先閱讀下面的解題過程:

  分解因式:                         

    解:方法(1)原式                方法(2)原式

                      

   請(qǐng)你參考上面一種解法,對(duì)多項(xiàng)式進(jìn)行因式分解.

(2)閱讀下面的解題過程:

     已知,試求的值.

     解:由已知得:

         因此得到:

         所以只有當(dāng)上式才能成立.

         因而得:         

  請(qǐng)你參考上面的解題方法解答下面的問題:

     已知:,試求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知x=-2是方程a(x+3)=a+x的解,則a= 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


    已知:線段AB=28cm.

    (1)如圖1,點(diǎn)P沿線段AB自點(diǎn)A以2cm/秒的速度向點(diǎn)B運(yùn)動(dòng),點(diǎn)P出發(fā)2秒后,點(diǎn)Q沿線段BA自點(diǎn)B以3cm/秒的速度向點(diǎn)A運(yùn)動(dòng),問再經(jīng)過幾秒后P、Q相距4cm?

    (2)如圖2,AO=8cm,PO=4cm,∠POB=60°,點(diǎn)P繞著點(diǎn)O以60度/秒的速度逆時(shí)針旋轉(zhuǎn)一周停止,同時(shí)點(diǎn)Q沿直線BA自點(diǎn)B向點(diǎn)A運(yùn)動(dòng),設(shè)點(diǎn)P、Q運(yùn)動(dòng)的時(shí)間為t(秒).

    ①當(dāng)t=   時(shí),∠AOP=90°;

②假若點(diǎn)P、Q兩點(diǎn)能相遇,求點(diǎn)Q運(yùn)動(dòng)的速度.

   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


在平行四邊形ABCD中,E為CD上一點(diǎn),DE:EC=1:2,連接AE、BE、BD,且AE、BD交于點(diǎn)F,則(    )

    A.1:3:9        B.1:5:9    C.2:3:5        D.2:3:9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


勾股定理有著悠久的歷史,它曾引起很多人的興趣.l955年希臘發(fā)行了二枚以勾股圖為背景的郵票.所謂勾股圖是指以直角三角形的三邊為邊向外作正方形構(gòu)成,它可以驗(yàn)證勾股定理.在右圖的勾股圖中,已知∠ACB=90°,∠BAC=30°,AB= 4.作△PQR使得∠R=90°,點(diǎn)H在邊QR上,點(diǎn)D,E在邊PR上,點(diǎn)G,F(xiàn)在邊_PQ上,那么APQR的周長等于       

 

 

 

 

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


將一副三角尺如圖拼接:含30°角的三角尺(△ABC)的長直角邊與含45°角的三角尺(△ACD)的斜邊恰好重合.已知AB=2PAC上的一個(gè)動(dòng)點(diǎn).

(1)當(dāng)點(diǎn)P運(yùn)動(dòng)到∠ABC的平分線上時(shí),連接DP,求DP的長;

(2)當(dāng)點(diǎn)P在運(yùn)動(dòng)過程中出現(xiàn)PDBC時(shí),求此時(shí)∠PDA的度數(shù);

(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),以D、PB、Q為頂點(diǎn)的平行四邊形的頂點(diǎn)Q恰好在邊BC上?求出此時(shí)□DPBQ的面積.


查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


右圖為手的示意圖,在各個(gè)手指間標(biāo)記字母AB、C、D。請(qǐng)你按圖中 箭頭所指方向(即A®B®C®D®C®B®A®B®C®…的方式)從A開始 數(shù)連續(xù)的正整數(shù)1,2,3,4…,當(dāng)數(shù)到12時(shí),對(duì)應(yīng)的字母是      ;當(dāng)字母C第201次出現(xiàn)時(shí),恰好數(shù)到

的數(shù)是      ;當(dāng)字母C第2n+1次出現(xiàn)時(shí)(n為正整數(shù)),恰好數(shù)到的數(shù)

      (用含n的代數(shù)式表示)。

 


查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖是一張邊被裁直的白紙,把一邊折疊后,BC、BD為折痕,A′、E′、B在同一直線上,則∠CBD的度數(shù)( 。

   A.               不能確定             B. 大于90°          C. 小于90°   D. 等于90°

查看答案和解析>>

同步練習(xí)冊(cè)答案